分析 利用1+cosα=$2co{s}^{2}\frac{α}{2}$及同角三角函数关系式能证明2(1+cosα)-sin2α=4cos4$\frac{α}{2}$.
解答 证明:2(1+cosα)-sin2α
=2×2$co{s}^{2}\frac{α}{2}$-1+cos2α
=4$co{s}^{2}\frac{α}{2}$-1+($2co{s}^{2}\frac{α}{2}-1$)2
=4$co{s}^{2}\frac{α}{2}$-1+($2co{s}^{2}\frac{α}{2}-1$)2+$4co{s}^{4}\frac{α}{2}-4co{s}^{2}\frac{α}{2}+1$
=4cos4$\frac{α}{2}$.
∴2(1+cosα)-sin2α=4cos4$\frac{α}{2}$.
点评 本题考查三角函数恒等式的化简证明,是中档题,解题时要认真审题,注意二倍角公式和同角三角函数关系式的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{4}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,-1) | B. | (5,-1) | C. | (-5,1) | D. | (1,-5) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-2,0)∪(2,+∞) | C. | (-2,2) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com