精英家教网 > 高中数学 > 题目详情
2.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是(  )
A.f(3)>f(-2)>f(-π)B.f(-π)>f(-2)>f(3)C.f(-2)>f(3)>f(-π)D.f(-π)>f(3)>f(-2)

分析 根据函数的单调性和奇偶性,求得f(-2),f(3),f(-π)的大小顺序.

解答 解:f(x)是R上的偶函数,则f(-2)=f(2),f(-π)=f(π),
再根据f(x)在[0,+∞)上单调递增,可得f(2)<f(3)<f(π),
即f(-2)<f(3)<f(-π),
故选:D.

点评 本题主要考查函数的单调性和奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.抛物线x2=-8y的通径为线段AB,O为抛物线的顶点,则通径长和△AOB的面积分别是(  )
A.4,4B.4,2C.8,8D.8,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=4x的焦点作两条垂直的弦AB,CD,则$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是偶函数,当x>0时,f(x)=10x,则当x<0时,f(x)=(  )
A.${(\frac{1}{10})^x}$B.-(10)xC.-${(\frac{1}{10})^x}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解下列关于x的不等式.
(1)$\frac{x+1}{x-2}$≥3,(2)x2-ax-2a2≤0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设一直线l经过点(-1,1),此直线被两平行直线l1:x+2y-1=0和l2:x+2y-3=0所截得线段的中点在直线x-y-1=0上,求直线 l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.lg32+log416-5lg$\frac{1}{5}$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算下列各式的值
(1)$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$
   (2)$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设各项均为正数的数列{an}满足$\frac{{S}_{n}}{{a}_{n}}$=pn+r(p,r为常数),其中Sn为数列{an}的前n项和.
(1)若p=1,r=0,求证:{an}是等差数列;
(2)若p=$\frac{1}{3}$,a1=2,求数列{an}的通项公式;
(3)若a2016=2016a1,求p•r的值.

查看答案和解析>>

同步练习册答案