精英家教网 > 高中数学 > 题目详情
7.设一直线l经过点(-1,1),此直线被两平行直线l1:x+2y-1=0和l2:x+2y-3=0所截得线段的中点在直线x-y-1=0上,求直线 l的方程.

分析 记直线l与两平行线的交点为C、D,CD的中点为M,由两直线交点坐标、中点坐标的求法得到点M的坐标,然后利用待定系数法求直线 l的方程.

解答 解:设直线 x-y-1=0与l1,l2的交点为 C(xC,yC),D(xD,yD),
则$\left\{\begin{array}{l}x+2y-1=0\\ x-y-1=0\end{array}\right.,⇒\left\{\begin{array}{l}{x_C}=1\\{y_C}=0\end{array}\right.$,
∴$C({1,0}).\left\{\begin{array}{l}x+2y-3=0\\ x-y-1=0\end{array}\right.,⇒\left\{\begin{array}{l}{x_D}=\frac{5}{3}\\{y_D}=\frac{2}{3}\end{array}\right.$,
∴$D({\frac{5}{3},\frac{2}{3}})$.
则C,D的中点M为$({\frac{4}{3},\frac{1}{3}})$.
又l过点(-1,1)由两点式得l的方程为$\frac{{y-\frac{1}{3}}}{{1-\frac{1}{3}}}=\frac{{x-\frac{4}{3}}}{{-1-\frac{4}{3}}}$,即2x+7y-5=0为所求方程.

点评 本题考查了中点坐标公式、直线的交点,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知an=n,bn=n+1,则数列$\left\{{\frac{1}{{{a_n}{b_n}}}}\right\}$的前n项和为Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:x2+(y-2)2=1,P是x轴正半轴上的一个动点,若PA,PB分别切圆C于A,B两点,若|AB|=$\frac{4\sqrt{2}}{3}$,则直线CP的方程为2x+$\sqrt{5}$y-2$\sqrt{5}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}的前n项和Sn=2an-1,则数列{an}的通项公式为(  )
A.an=2nB.an=2n-1C.an=2n-1D.an=2n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是(  )
A.f(3)>f(-2)>f(-π)B.f(-π)>f(-2)>f(3)C.f(-2)>f(3)>f(-π)D.f(-π)>f(3)>f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知log23=a,log25=b,则${log_2}\frac{9}{5}$=(  )
A.$\frac{2a}{b}$B.2a-bC.a2-bD.$\frac{a^2}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解关于x的方程:
(1)lgx+lg(x-3)=1;
(2)${(\frac{2}{3})^x}•{(\frac{9}{8})^x}=\frac{27}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为些作了四次试验,得到的数据如下表所示:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(Ⅰ)求出y关于x的线性回归方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐标系中画出回归直线;
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,角A,B,C所对的边分别为a,b,c,且asinAcosC+csinAcosA=$\frac{1}{3}$c,D为AC边上一点.
(1)若c=2b=4,S△BCD=$\frac{5}{3}$,求DC的长.
(2)若D是AC的中点,且$cosB=\frac{{2\sqrt{5}}}{5},BD=\sqrt{26}$,求△ABC的最短边的边长.

查看答案和解析>>

同步练习册答案