精英家教网 > 高中数学 > 题目详情
18.已知圆C:x2+(y-2)2=1,P是x轴正半轴上的一个动点,若PA,PB分别切圆C于A,B两点,若|AB|=$\frac{4\sqrt{2}}{3}$,则直线CP的方程为2x+$\sqrt{5}$y-2$\sqrt{5}$=0.

分析 如图所示,由切线长定理得到Q为线段AB中点,在直角三角形ACQ中,利用勾股定理求出|CQ|的长,再利用相似求出|CP|的长,设P(p,0),利用勾股定理求出p的值,即可确定出直线CP方程.

解答 解:如图所示,|AC|=r=1,|AQ|=$\frac{1}{2}$|AB|=$\frac{2\sqrt{2}}{3}$,
在Rt△ACQ中,根据勾股定理得:|CQ|=$\frac{1}{3}$,
∵△ACQ∽△PCA,
∴$\frac{\frac{1}{3}}{1}$=$\frac{1}{|CP|}$,即|CP|=3,
设P(p,0)(p>0),即|OP|=p,
在Rt△OPC中,根据勾股定理得:9=4+p2
解得:p=$\sqrt{5}$,即P($\sqrt{5}$,0),
则直线CP解析式为y=$\frac{2-0}{0-\sqrt{5}}$(x-$\sqrt{5}$),即2x+$\sqrt{5}$y-2$\sqrt{5}$=0,
故答案为:2x+$\sqrt{5}$y-2$\sqrt{5}$=0

点评 此题考查了直线与圆的位置关系,涉及的知识有:切线长定理,切线性质,勾股定理,相似三角形的判定与性质,以及直线的两点式方程,熟练掌握性质及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知空间四边形ABCD中,对角线AC=$2\sqrt{3}$,BD=2,E、F分别是AB、CD的中点,EF=2,求异面直线AC与EF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的函数f(x)的导函数为f'(x),f(x)的图象关于直线x=1对称,且(x-1)f'(x)<0,若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是(  )
A.f(x1)>f(x2B.f(x1)<f(x2C.f(x1)=f(x2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x{+∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))≥1,则实数a的范围是(  )
A.a≤-1B.a≥-1C.a≤1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=4x的焦点作两条垂直的弦AB,CD,则$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=(  )
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数fM(x)的定义域为R,且定义如下:fM(x)=$\left\{\begin{array}{l}2,x∈M\\ 0,x∉M\end{array}$,其中M是实数集R的非空真子集,在实数集R上有两个非空真子集A,B满足A∩B=φ,则函数F(x)=$\frac{{{f_A}(x)+{f_B}(x)+2}}{{{f_{A∪B}}(x)+2}}$的值域为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)是偶函数,当x>0时,f(x)=10x,则当x<0时,f(x)=(  )
A.${(\frac{1}{10})^x}$B.-(10)xC.-${(\frac{1}{10})^x}$D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设一直线l经过点(-1,1),此直线被两平行直线l1:x+2y-1=0和l2:x+2y-3=0所截得线段的中点在直线x-y-1=0上,求直线 l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=1,对于任意x∈R,f(x)≥x,且f(${\frac{1}{2}$+x)=f(${\frac{1}{2}$-x).令g(x)=f(x)-|mx-1|(m>0).
(1)求函数f(x)解析式;
(2)探求函数g(x)在区间(0,1)上的零点个数.

查看答案和解析>>

同步练习册答案