精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
3
x3-4x+4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数g(x)=x2-2x+m,对?x1,x2∈[0,3],都有f(x1)≥g(x2),求实数m的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究函数的极值
专题:导数的综合应用
分析:(Ⅰ)由已知得f'(x)=x2-4=(x+2)(x-2),令f'(x)=0,解得x=-2,或x=2,由此列表讨论,能求出函数f(x)的极值.
(Ⅱ)因为?x1,x2∈[0,3],都有f(x1)≥g(x2),所以只需f(x)min≥g(x)max即可,由此能求出实数m的取值范围.
解答: 解:(Ⅰ)因为f(x)=
1
3
x3-4x+4

所以f'(x)=x2-4=(x+2)(x-2),(1分)
令f'(x)=0,解得x=-2,或x=2,
x(-∞,-2)-2(-2,2)2(2,+∞)
f(x)+0-0+
f'(x)
28
3
-
4
3
(4分)
故当x=-2时,f(x)有极大值,极大值为
28
3
;(5分)
当x=2时,f(x)有极小值,极小值为-
4
3
.(6分)
(Ⅱ)因为?x1,x2∈[0,3],都有f(x1)≥g(x2),
所以只需f(x)min≥g(x)max即可.(7分)
由(Ⅰ)知:函数f(x)在区间[0,3]上的最小值f(x)min=f(2)=-
4
3
,(9分)
又g(x)=x2-2x+m=(x-1)2+m-1,
则函数g(x)在区间[0,3]上的最大值g(x) max=g(3)=m+3,(11分)
由f(x)min≥g(x)max,即m+3≤-
4
3
,解得m≤-
13
3

故实数m的取值范围是(-∞,-
13
3
]
.(12分)
点评:本题考查函数的极值的求法,考查实数的取值范围的求法,解题时要认真审题,注意导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列图形中不一定是平面图形的是(  )
A、三角形B、平行四边形
C、梯形D、四边相等的四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2x-
x-1
的值域(  )
A、[0,+∞)
B、[
17
8
,+∞)
C、[
5
4
,+∞)
D、[
15
8
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x在(a,8-a2)上有最小值,则实数a的取值范围是(  )
A、(-
7
,1)
B、[-
7
,1)
C、[-2,1)
D、(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求a,b的值;
(2)求函数y=f(x)在[0,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c为角A、B、C所对的边,2sin2CcosC-sin3C=
3
(1-cosC)
(1)求角C的大小;
(2)若c=2,且sinC+sin(B-A)=2sin2A且A≠
π
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sinα-3cosα
sinα+cosα
=-1,求下列各式的值
(1)tanα;     
(2)sin2α+sinαcosα+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-lnx(a∈R).
(1)求f(x)的单调区间;
(2)若在区间[1,e]上,函数y=f(x)的图象恒在直线y=1的上方,求a的取值范围;
(3)设g(x)=x3-2bx+1,当a=
1
e
时,若对于任意的x1∈[1,e],总存在x2∈(0,1],使得f(x1)≥g(x2)成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式13=1,13+23=9,13+23+33=36,13+23+33+43=100…照此规律,第n个等式可为
 

查看答案和解析>>

同步练习册答案