精英家教网 > 高中数学 > 题目详情
观察下列等式13=1,13+23=9,13+23+33=36,13+23+33+43=100…照此规律,第n个等式可为
 
考点:归纳推理
专题:计算题,推理和证明
分析:左边是连续自然数的立方和,右边是左边的数的和的立方,由此得到结论.
解答: 解:13=1
13+23=9=(1+2)2
13+23+33=36=(1+2+3)2
13+23+33+43=100=(1+2+3+4)2
由以上可以看出左边是连续自然数的立方和,右边是左边的数的和的立方,
照此规律,第n个等式可为:13+23+…+n3=
n2(n+1)2
4

故答案为:13+23+…+n3=
n2(n+1)2
4
点评:本题考查了规律型:数字的变化.解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-4x+4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数g(x)=x2-2x+m,对?x1,x2∈[0,3],都有f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+4,(x∈R)在x=2处取得极小值.
(Ⅰ)若函数f(x)的极小值是-4,求f(x);
(Ⅱ)若函数f(x)的极小值不小于-6,问:是否存在实数k,使得函数f(x)在[k,k+3]上单调递减.若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,{bn}是等比数列,且a1=b1=2,S4=26,b4=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx(a∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)当a=1时,求函数f(x)+2x的极值;
(Ⅲ)若f(x)<x2在x∈(1,+∞)时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,
(1)求a、b的值;
(2)设函数f(x)=
g(x)
x
,试判断f(x)在区间[2,3]上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)=
2x-b
2x+a

(Ⅰ)求a,b的值.
(Ⅱ)判断f(x)的单调性,并说明理由;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=cosθ
y=
3
6
sinθ
(θ为参数),C2
x=
2
2
+t•cosα
y=t•sinα
(t为参数).
(Ⅰ)将C1、C2的方程化为普通方程;
(Ⅱ)若C2与C1交于M、N,与x轴交于P,求|PM|•|PN|的最小值及相应α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=alnx+
1
2
x2-x(a∈R)
(Ⅰ)若x=2是函数f(x)的一个极值点,求f(x)的最小值;
(Ⅱ)对?x∈(e,+∞),f(x)-ax>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案