精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)求a,b的值;
(2)求函数y=f(x)在[0,2]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)由已知得f′(x)=3ax2+2bx-3,
3a+2b-3=0
3a-2b-3=0
,由此能求出a,b.
(2)由(1)得f′(x)=3x2-3=3(x+1)(x-1).由此利用导数性质能求出函数y=f(x)在[0,2]上的最大值和最小值.
解答: 解:(1)∵f(x)=ax3+bx2-3x,
∴f′(x)=3ax2+2bx-3,
∵f(x)=ax3+bx2-3x在x=±1处取得极值,
∴f′(1)=f′(-1)=0,
3a+2b-3=0
3a-2b-3=0
,解得a=1,b=0.…(6分)
(2)由(1)得f(x)=x3-3x,
∴f′(x)=3x2-3=3(x+1)(x-1).
由f′(x)=0,得x=1,或x=-1(舍),
∵x∈(0,1)时,f′(x)<0,
∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.
∵f(0)=0,f(2)=2,f(1)=-2.
∴最大值为2,最小值为-2.…(12分)
点评:本题主要考查函数与导数等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、数形结合思想、函数与方程思想、化归与转化思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-12x,则f(x)的极小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

向量
a
b
均为单位向量,其夹角为θ,则命题“p:|
a
-
b
|>1”是命题q:θ∈[
π
2
6
)的(  )条件(  )
A、充分非必要条件
B、必要非充分条件
C、充分必要条件
D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,a1=1,an+3≤an+3,an+2≥an+2,则a2014=(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是(  )
A、-
2
5
B、
2
5
C、
3
5
D、
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-4x+4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数g(x)=x2-2x+m,对?x1,x2∈[0,3],都有f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆O外一点P分别作圆的切线PA和割线PB,且PB=9,C是圆上一点使得BC=4,∠BAC=∠APB,则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:Sn=2an-2(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx(a∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)当a=1时,求函数f(x)+2x的极值;
(Ⅲ)若f(x)<x2在x∈(1,+∞)时恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案