精英家教网 > 高中数学 > 题目详情
已知
sinα-3cosα
sinα+cosα
=-1,求下列各式的值
(1)tanα;     
(2)sin2α+sinαcosα+1.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:(1)将所求的关系式的分子与分母同除cosα,“弦”化“切”即可求得答案;
(2)将所求关系式的前两项分母化为1,利用平方关系,再“弦”化“切”即可.
解答: 解:(1)∵
sinα-3cosα
sinα+cosα
=
tanα-3
tanα+1
=-1,
∴tanα=1.
(2)sin2α+sinαcosα+1=
sin2α+sinαcosα
sin2α+cos2α
+1=
tan2α+tanα
tan2α+1
+1=1+1=2.
点评:本题考查同角三角函数基本关系的运用,“弦”化“切”是关键,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若抛物线y=2px2(p>0)的焦点与双曲线
y2
2
-
x2
2
=1的一个焦点重合,则p的值为(  )
A、2
B、4
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}中,a1=1,an+3≤an+3,an+2≥an+2,则a2014=(  )
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-4x+4.
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设函数g(x)=x2-2x+m,对?x1,x2∈[0,3],都有f(x1)≥g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆O外一点P分别作圆的切线PA和割线PB,且PB=9,C是圆上一点使得BC=4,∠BAC=∠APB,则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知g(θ)=
cos(-θ-
π
2
)•sin(
2
+θ)
sin(2π-θ)

(1)化简g(θ);
(2)若g(
π
3
+θ)=
1
3
,θ∈(
π
6
6
),求g(
6
+θ)的值;
(3)若g(
3
2
π-θ)-g(θ)=
1
3
,θ∈(-
π
2
π
2
),求g(θ)-g(
π
2
-θ)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:Sn=2an-2(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+4,(x∈R)在x=2处取得极小值.
(Ⅰ)若函数f(x)的极小值是-4,求f(x);
(Ⅱ)若函数f(x)的极小值不小于-6,问:是否存在实数k,使得函数f(x)在[k,k+3]上单调递减.若存在,求出k的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的奇函数f(x)=
2x-b
2x+a

(Ⅰ)求a,b的值.
(Ⅱ)判断f(x)的单调性,并说明理由;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)>0恒成立,求k的取值.

查看答案和解析>>

同步练习册答案