精英家教网 > 高中数学 > 题目详情

的最大值.

解析试题分析:      (2分)
                (4分)
  ∴ ∴
        (6分)
  ∴

对称轴:  (8分)
      (10分)
考点:本题考查了三角函数的恒等变换及最值的求法
点评:对于形如的三角函数求最值问题,设化为二次函数在闭区间上的最值求之;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的最小正周期和图象的对称轴方程;
(Ⅱ)求函数在区间上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=sin.
(1)求它的振幅、周期、初相;
(2)在所给坐标系中用五点法作出它在区间上的图象.
(3)说明y=sin x的图像可由ysin的图像经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求的定义域及最小正周期;
(Ⅱ)求

在区间上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中
(I)若的值;
(Ⅱ)在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于,求函数的解析式;并求最小正实数,使得函数的图像象左平移个单位所对应的函数是偶函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, 其中
,其中相邻两对称轴间的距离不小于
(1)求的取值范围;
(2)在中,分别是角A、B、C的对边,,当最大时,的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数·
(1)求函数的最小正周期T及单调减区间
(2)已知分别是△ABC内角A,B,C的对边,其中A为锐角,
,求A,b和△ABC的面积S

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知为坐标原点,向量是直线上一点,且
(1)设函数,讨论的单调性,并求其值域;
(2)若点共线,求的值。

查看答案和解析>>

同步练习册答案