【题目】【2018江西南康中学、于都中学上学期第四次联考】椭圆
上动点
到两个焦点的距离之和为4,且到右焦点距离的最大值为
.
(I)求椭圆
的方程;
(II)设点
为椭圆的上顶点,若直线
与椭圆
交于两点
(
不是上下顶点)
.试问:直线
是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(III)在(II)的条件下,求
面积的最大值.
【答案】(I)
;(II)过定点
;(III)
.
【解析】试题分析:(1)由题意布列关于a,b的方程组,解之即可;(2)联立直线与椭圆方程消去y得到关于x的一元二次方程,然后借助韦达定理,将向量的数量积为零表示出来,得到方程,进而求出定点。(3) 第三问的面积则是将
拆分成
和
两个三角形面积之和,表达面积后,利用换元法简化表达式,再利用均值不等式求最值即可.
试题解析:
(1)由已知得:2a=4∴a=2,
,
,b=1, ∴椭圆C的方程为:
.
(2)依题意可设直线
(k必存在),
,将
代入椭圆方程得
.
,
,
∵
∴
,
∴
,∵点B为椭圆的上顶点,且
,∴
,
,
或
(舍去),,∴直线l
必过定点
.
(3)不难得到:
,
,
令
,则
,
∴
(当
,即
时取等号).
科目:高中数学 来源: 题型:
【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
![]()
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x-1+
(a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.
(1)求a的值;
(2)求函数f(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的中心在坐标原点,焦点在
轴上,离心率
,且椭圆
经过点
,过椭圆
的左焦点
且不与坐标轴垂直的直线交椭圆
于
,
两点.
(1)求椭圆
的方程;
(2)设线段
的垂直平分线与
轴交于点
,求△
的面积
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,动圆
与圆
内切并且与圆
外切,圆心
的轨迹为曲线
.
(Ⅰ)求
的方程;
(Ⅱ)已知曲线
与
轴交于
两点,过动点
的直线与
交于
(不垂直
轴),过
作直线交
于点
且交
轴于点
,若
构成以
为顶点的等腰三角形,证明:直线
,
的斜率之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:
![]()
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组
与
的对应数据:
![]()
据此计算出的回归方程为
.
(i)求参数
的估计值;
(ii)若把回归方程
当作
与
的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com