精英家教网 > 高中数学 > 题目详情
9.已知角α终边经过点P(3,2).
(Ⅰ)求$\frac{sin(π-α)+4cos(π+α)}{2sin(\frac{π}{2}-α)-3cos(\frac{π}{2}+α)}$的值;
(Ⅱ)求tan(2α+$\frac{π}{4}$)的值.

分析 (Ⅰ)由角α的终边经过点P(1,-2),利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可求出值.
(Ⅱ)利用同角三角函数基本关系式可求tanα,利用二倍角的正切函数公式可求tan2α,进而利用两角和的正切函数公式及特殊角的三角函数值即可求得tan(2α+$\frac{π}{4}$)的值.

解答 (本题满分为12分)
解:(Ⅰ)∵角α的终边经过点P(3,2),
∴sinα=$\frac{2}{\sqrt{13}}$,cosα=$\frac{3}{\sqrt{13}}$,
∴$\frac{sin(π-α)+4cos(π+α)}{2sin(\frac{π}{2}-α)-3cos(\frac{π}{2}+α)}$=$\frac{sinα-4cosα}{2cosα+3sinα}$=$\frac{\frac{2}{\sqrt{13}}-\frac{12}{\sqrt{13}}}{\frac{6}{\sqrt{13}}+\frac{6}{\sqrt{13}}}$=-$\frac{5}{6}$;
(Ⅱ)∵tanα=$\frac{sinα}{cosα}$=$\frac{2}{3}$,tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{12}{5}$,
∴tan(2α+$\frac{π}{4}$)=$\frac{tan2α+1}{1-tan2α}$=-$\frac{17}{7}$.

点评 本题主要考查了任意角的三角函数定义,同角三角函数基本关系式,二倍角的正切函数公式,两角和的正切函数公式及特殊角的三角函数值在三角函数化简求值中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在复平面内,O是原点,向量$\overrightarrow{OA}$对应的复数是2+i,点A关于虚轴的对称点为B,则向量$\overrightarrow{OB}$对应的复数是(  )
A.1+2iB.-2+iC.2-iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平行四边形ABCD中,点F为线段CD上靠近点D的一个三等分点.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+$\sqrt{x}$)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.假设需要新建n个桥墩.
(1)写出n关于x的函数关系式;
(2)写出y关于x的函数关系式;
(3)当m=640米时,需新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.先把正弦函数y=sinx图象上所有的点向左平移$\frac{π}{6}$个长度单位,再把所得函数图象上所有的点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变),再将所得函数图象上所有的点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),则所得函数图象的解析式是(  )
A.y=2sin($\frac{1}{2}$x+$\frac{π}{6}$)B.y=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)C.y=2sin($\frac{1}{2}$x-$\frac{π}{6}$)D.y=$\frac{1}{2}$sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校为了解一个英语教改实验班的情况,举行了一次测试,将该班30位学生的英语成绩进行统计,得图示频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出该班学生英语成绩的众数,平均数及中位数;
(Ⅱ)从成绩低于80分的学生中随机抽取2人,规定抽到的学生成绩在[50,60)的记1绩点分,在[60,80)的记2绩点分,设抽取2人的总绩点分为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若两圆x2+y2-2mx=0与x2+(y-2)2=1相外切,则实数m的值为(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$±\frac{3}{2}$D.$±\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=1.且对于任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ.则sinθ等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.赵岩,徐婷婷,韩磊不但是同班同学,而且是非常要好的朋友,三个人的学习成绩不相伯仲,且在整个年级中都遥遥领先,高中毕业后三个人都如愿的考入自己心慕以久的大学.后来三个人应母校邀请给全校学生作一次报告.报告后三个人还出了一道数学题:有一种密码把英文按字母分解,英文中的a,b,c,…,z26个字母(不论大小写)依次用1,2,3,…,26这26个自然数表示,并给出如下一个变换公式:$y=\left\{{\begin{array}{l}{[\frac{x}{2}]+1(其中x是不超过26的正奇数)}\\{[\frac{x+1}{2}]+13(其中x是不超过26的正偶数)}\end{array}}\right.$;已知对于任意的实数x,记号[x]表示不超过x的最大整数;将英文字母转化成密码,如$8→[\frac{8+1}{2}]+13=17$,即h变成q,再如$11→[\frac{11}{2}]+1=6$,即k变成f.他们给出下列一组密码:etwcvcjwejncjwwcabqcv,把它翻译出来就是一句很好的临别赠言.现在就请你把它翻译出来,并简单地写出翻译过程.

查看答案和解析>>

同步练习册答案