精英家教网 > 高中数学 > 题目详情
20.在平行四边形ABCD中,点F为线段CD上靠近点D的一个三等分点.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow{b}$,则$\overrightarrow{AF}$=(  )
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

分析 设$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AD}$=$\overrightarrow{n}$.则$\overrightarrow{AC}$=$\overrightarrow{a}$=$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{m}+\overrightarrow{n}$,$\overrightarrow{BD}$=$\overrightarrow{b}$=$\overrightarrow{AD}-\overrightarrow{AB}$=$\overrightarrow{n}$-$\overrightarrow{m}$,可用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{m}$,$\overrightarrow{n}$.代入$\overrightarrow{AF}$=$\overrightarrow{AD}+\overrightarrow{DF}$即可得出.

解答 解:设$\overrightarrow{AB}$=$\overrightarrow{m}$,$\overrightarrow{AD}$=$\overrightarrow{n}$.
则$\overrightarrow{AC}$=$\overrightarrow{a}$=$\overrightarrow{AB}+\overrightarrow{AD}$=$\overrightarrow{m}+\overrightarrow{n}$,$\overrightarrow{BD}$=$\overrightarrow{b}$=$\overrightarrow{AD}-\overrightarrow{AB}$=$\overrightarrow{n}$-$\overrightarrow{m}$,
∴$\overrightarrow{m}$=$\frac{1}{2}(\overrightarrow{a}-\overrightarrow{b})$,$\overrightarrow{n}$=$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})$.
则$\overrightarrow{AF}$=$\overrightarrow{AD}+\overrightarrow{DF}$=$\overrightarrow{AD}$+$\frac{1}{3}\overrightarrow{AB}$=$\overrightarrow{n}$+$\frac{1}{3}$$\overrightarrow{m}$=$\frac{1}{2}(\overrightarrow{a}+\overrightarrow{b})$+$\frac{1}{3}$×$\frac{1}{2}$$(\overrightarrow{a}-\overrightarrow{b})$=$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}\overrightarrow{b}$.
故选:B.

点评 本题考查了向量的三角形法则、向量的平行四边形法则、向量的线性运算,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.计算$\frac{lo{g}_{3}2}{lo{g}_{27}64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有下列等式:①sin(π+α)=-sinα;②cos($\frac{π}{2}$+α)=-sinα;③tan(π-α)=-tanα,其中正确等式的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,已知|$\overrightarrow{AB}$|=|$\overrightarrow{AC}$|=4且$\overrightarrow{AB}$•$\overrightarrow{AC}$=8,则该三角形是(  )
A.等边三角形B.等腰直角三角形C.等腰三角形D.不能判断形状

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α是第三象限角,且sinα=-$\frac{3}{5}$.
(Ⅰ)求tanα与tan(α-$\frac{π}{4}$)的值;
(Ⅱ)求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.从编号为0,1,2,…,89的90件产品中,采用系统抽样的方法抽取容量是9的样本.若编号为36的产品在样本中,则该样本中产品的最大编号为86.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},a1=1,a2=2,若an+2=-an,则数列{an+n}的前100项和S100=5050.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知角α终边经过点P(3,2).
(Ⅰ)求$\frac{sin(π-α)+4cos(π+α)}{2sin(\frac{π}{2}-α)-3cos(\frac{π}{2}+α)}$的值;
(Ⅱ)求tan(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知($\root{3}{x}$-$\frac{2}{x}$)n的展开式中,第三项的系数为144.
(Ⅰ)求该展开式中所有偶数项的二项式系数之和;
(Ⅱ)求该展开式的所有有理项.

查看答案和解析>>

同步练习册答案