分析 (Ⅰ)由频率分布直方图能求出众数、平均数和中位数.
(Ⅱ)依题意,成绩在[50,60)的学生数为2人,成绩在[60,80)的学生数为10人,ξ可取的值为2,3,4,分别求出相应的概率,由此能求出ξ的分布列和数学期望.
解答 解:(Ⅰ)由频率分布直方图可知:众数为85.
平均数为:55×$\frac{2}{30}+65×\frac{4}{30}+75×\frac{6}{30}+85×\frac{10}{30}+95×\frac{8}{30}$=81,
∴该班学生英语成绩的平均数为81.
设中位数为x,由频率分布直方图,得:
[50,80)内的频率为($\frac{2}{300}+\frac{4}{300}+\frac{6}{300}$)×10=0.4,[80,90)内的频率为$\frac{10}{300}×10$=$\frac{1}{3}$,
∴中位数x=80+$\frac{0.5-0.4}{\frac{1}{3}}×10$=83.
(Ⅱ)依题意,成绩在[50,60)的学生数为30×$(\frac{2}{300}×10)=2$,
成绩在[60,80)的学生数为30×$(\frac{4}{300}×10+\frac{6}{300}×10)$=10,
∴成绩低于80分的学生总人数为 12,
∴ξ可取的值为2,3,4,
P(ξ=2)=$\frac{{C}_{2}^{2}}{{C}_{12}^{2}}$=$\frac{1}{66}$,
P(ξ=3)=$\frac{{C}_{2}^{1}{C}_{10}^{1}}{{C}_{12}^{2}}$=$\frac{20}{66}$,
P(ξ=4)=$\frac{{C}_{10}^{2}}{{C}_{12}^{2}}$=$\frac{45}{66}$,
∴ξ的分布列为:
| ξ | 2 | 3 | 4 |
| P | $\frac{1}{66}$ | $\frac{20}{66}$ | $\frac{45}{66}$ |
点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列、数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0或1 | C. | 3 | D. | 0或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com