精英家教网 > 高中数学 > 题目详情
6.已知直角△ABC,AB=AC=3,P,Q分别为边AB,BC上的点,M,N是平面上两点,若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,且直线MN经过△ABC的外心,则$|\overrightarrow{BP}|$=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

分析 建立坐标系,利用坐标法将直角三角形放入坐标系中,根据$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,得到A是PM的中点,以及PQ⊥BC,结合三角形的长度关系转化为点到直线的距离进行求解即可.

解答 解:建立坐标系将,将直角三角形放入坐标系中,
若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,则$\overrightarrow{AP}$=-$\overrightarrow{AM}$=$\overrightarrow{MA}$,
即A是PM的中点,
∵直线MN经过△ABC的外心,
∴直线MN经过BC的中点E,
∵($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,
∴$\overrightarrow{PQ}$•$\overrightarrow{BC}$=0,即PQ⊥BC,AE⊥BC,
则PN∥AE,PN=2AE=2×$\frac{3\sqrt{2}}{2}$=3$\sqrt{2}$,
∵$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,
∴PN=3PQ=3$\sqrt{2}$,
即PQ=$\sqrt{2}$,
直线BC的方程为x+y-3=0,
设P(0,m),0<m<3,
则PQ=$\frac{|m-3|}{\sqrt{2}}$=$\sqrt{2}$,即|m-3|=2,
则m=1或m=5(舍),
即P(0,1),则$|\overrightarrow{BP}|$=|BP|=2,
故选:D.

点评 本题主要考查向量数量积的应用,利用坐标法结合数形结合,条件中点坐标公式以及直线垂直的条件进行转化是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.将函数f(x)=cos(x+φ)的图象上每点的横坐标缩短为原来的$\frac{1}{2}$倍(纵坐标不变),再将所得的图象向左平移$\frac{π}{6}$个单位长度后得到的图象关于坐标原点对称,则下列直线中是函数f(x)图象的对称轴的是(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=-$\frac{5π}{12}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩.经预测一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+$\sqrt{x}$)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.假设需要新建n个桥墩.
(1)写出n关于x的函数关系式;
(2)写出y关于x的函数关系式;
(3)当m=640米时,需新建多少个桥墩才能使y最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校为了解一个英语教改实验班的情况,举行了一次测试,将该班30位学生的英语成绩进行统计,得图示频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求出该班学生英语成绩的众数,平均数及中位数;
(Ⅱ)从成绩低于80分的学生中随机抽取2人,规定抽到的学生成绩在[50,60)的记1绩点分,在[60,80)的记2绩点分,设抽取2人的总绩点分为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若两圆x2+y2-2mx=0与x2+(y-2)2=1相外切,则实数m的值为(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$±\frac{3}{2}$D.$±\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在xOy平面上,点A,B在单位圆上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若点B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=1.且对于任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,设$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ.则sinθ等于(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若2弧度的圆心角所夹的扇形的面积是4cm2,则该圆心角所对的弧长为(  )
A.2πcmB.2cmC.4πcmD.4cm

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在我国南宋数学家杨辉所著的《详解》(1261年)一书中,用如图(1)的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士•帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”( Chinese triangle)如图(1),17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图(2).在杨辉三角中相邻两行满足关系式:Cnr+Cnr+1=Cn+1r+1,其中n是行数,r∈N.请类比上式,在莱布尼兹三角中相邻两行满足的关系式是$\frac{1}{{C_{n+1}^1C_n^r}}=\frac{1}{{C_{n+2}^1C_{n+1}^r}}+\frac{1}{{C_{n+2}^1C_{n+1}^{r+1}}}$

查看答案和解析>>

同步练习册答案