精英家教网 > 高中数学 > 题目详情
11.如图,在xOy平面上,点A,B在单位圆上,已知A(1,0),∠AOB=θ(0<θ<π)
(Ⅰ)若点B(-$\frac{3}{5}$,$\frac{4}{5}$),求$\frac{sin(π+θ)+cos(\frac{3π}{2}-θ)}{cos(\frac{π}{2}+θ)tan(π-θ)}$的值;
(Ⅱ)若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{18}{13}$,求tanθ的值.

分析 (Ⅰ)根据三角函数的诱导公式以及三角函数的定义进行化简求解即可;
(Ⅱ)根据向量数量积的定义结合向量数量积和三角函数的关系进行转化求解.

解答 解:(Ⅰ)$\frac{{sin(π+θ)+cos(\frac{3π}{2}-θ)}}{{cos(\frac{π}{2}+θ)tan(π-θ)}}=\frac{-sinθ-sinθ}{-sinθ(-tanθ)}=\frac{-2sinθ}{sinθtanθ}=-\frac{2}{tanθ}$-------(3分)
因为$B(-\frac{3}{5},\frac{4}{5})$,
所以$tanθ=\frac{y}{x}=-\frac{4}{3}$,
所以原式=$-\frac{2}{tanθ}=\frac{3}{2}$----------------------(6分)
(Ⅱ)∵$\overrightarrow{OA}=(1,0),\overrightarrow{OB}=(cosθ,sinθ)$,∴$\overrightarrow{OC}=(1+cosθ,sinθ)$,--------------(8分)
∴$\overrightarrow{OB}•\overrightarrow{OC}=cosθ(1+cosθ)+{sin^2}θ=cosθ+{cos^2}θ+{sin^2}θ=\frac{18}{13}$,
∴$cosθ=\frac{5}{13}$,----------------------(10分)
∵0<θ<π,
∴$sinθ=\frac{12}{13}$,
∴$tanθ=\frac{12}{5}$.----------------------(12分)

点评 本题主要考查平面向量数量积的运算以及向量和三角函数的综合,根据相应的公式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在边长为2的正三角形ABC中,D为边BC的中点,E为边AC上任意一点,则$\overrightarrow{AD}$•$\overrightarrow{BE}$的最小值是-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),$\overrightarrow{c}$=(a,0),且$\overrightarrow{c}$⊥($\overrightarrow{m}$-$\overrightarrow{n}$),则实数a=(  )
A.1B.0或1C.3D.0或3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{x}{x+1}+\frac{x+1}{x+2}$的对称中心为(-1.5,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直角△ABC,AB=AC=3,P,Q分别为边AB,BC上的点,M,N是平面上两点,若$\overrightarrow{AP}$+$\overrightarrow{AM}$=0,($\overrightarrow{PB}$+$\overrightarrow{BQ}$)•$\overrightarrow{BC}$=0,$\overrightarrow{PN}$=3$\overrightarrow{PQ}$,且直线MN经过△ABC的外心,则$|\overrightarrow{BP}|$=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知关于x的不等式ax2-(a+2)x+2<0.
(1)当a=-1时,解不等式;
(2)当a∈R时,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以下四个命题正确的个数(  )
①用反证法证明数学命题时首先应该做出与命题结论相矛盾的假设.否定“自然数a,b,c中恰有一个奇数”时正确的反设为“自然数a,b,c中至少有两个奇数或都是偶数”;
②在复平面内,表示两个共轭复数的点关于实轴对称;
③在回归直线方程$\stackrel{∧}{y}$=-0.3x+10中,当变量x每增加一个单位时,变量$\stackrel{∧}{y}$平均增加0.3个单位;
④抛物线y=x2过点($\frac{3}{2}$,2)的切线方程为2x-y-1=0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合M={x|0<x≤6},从集合M中任取一个数x,使得函数y=log2x的值大于1的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}(n∈N*),满足a1=1,2an+1=$\frac{1}{2}$an+$\sqrt{\frac{1}{3}+{a_n}}$.
(Ⅰ) 求证:$\frac{2}{3}$<an+1<an
(Ⅱ) 设数列{an}(n∈N*)的前n项和为Sn,证明:Sn<$\frac{2n}{3}$+$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案