[Ñ¡×öÌâ]ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö¡£ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Öè¡£
A£®Ñ¡ÐÞ4 - 1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬¡÷ABC¡Õ¡÷BAD¡£

ÇóÖ¤£ºAB¡ÎCD¡£
B£®Ñ¡ÐÞ4 - 2£º¾ØÕóÓë±ä»»
Çó¾ØÕóµÄÄæ¾ØÕó¡£
C£®Ñ¡ÐÞ4 - 4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌΪ£¨Îª²ÎÊý£¬£©£¬ÇóÇúÏßCµÄÆÕͨ·½³Ì¡£
D£®Ñ¡ÐÞ4 - 5£º²»µÈʽѡ½²
Éè¡Ý£¾0£¬ÇóÖ¤£º¡Ý¡£


A£®Ö¤Ã÷¼û½âÎö¡£
B£®
C£®
D£®Ö¤Ã÷¼û½âÎö¡£

½âÎöA£®±¾Ð¡ÌâÖ÷Òª¿¼²éËıßÐΡ¢È«µÈÈý½ÇÐεÄÓйØ֪ʶ£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡£Âú·Ö10·Ö¡£
ÓÉ¡÷ABC¡Õ¡÷BADµÃ¡ÏACB=¡ÏBDA£¬¹ÊA¡¢B¡¢C¡¢DËĵ㹲Բ£¬´Ó¶ø¡ÏCBA=¡ÏCDB¡£ÔÙÓÉ¡÷ABC¡Õ¡÷BADµÃ¡ÏCAB=¡ÏDBA¡£Òò´Ë¡ÏDBA=¡ÏCDB£¬ËùÒÔAB¡ÎCD¡£
B£®±¾Ð¡ÌâÖ÷Òª¿¼²éÄæ¾ØÕóµÄÇ󷨣¬¿¼²éÔËËãÇó½âÄÜÁ¦¡£Âú·Ö10·Ö¡£
Éè¾ØÕóAµÄÄæ¾ØÕóΪ£¬Ôò£¬
¼´£¬¹Ê£¬
½âµÃ£º£¬
´Ó¶øAµÄÄæ¾ØÕóΪ¡£
C£®±¾Ð¡ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»ù±¾ÖªÊ¶£¬¿¼²éת»¯ÎÊÌâµÄÄÜÁ¦¡£Âú·Ö10·Ö¡£
ÒòΪ£¬ËùÒÔ£¬
¹ÊÇúÏßCµÄÆÕͨ·½³ÌΪ£º¡£
D£®±¾Ð¡ÌâÖ÷Òª¿¼²é±È½Ï·¨Ö¤Ã÷²»µÈʽµÄ³£¼û·½·¨£¬¿¼²é´úÊýʽµÄ±äÐÎÄÜÁ¦¡£Âú·Ö10·Ö¡£
¡£
ÒòΪ¡Ý£¾0£¬ËùÒÔ¡Ý0£¬£¾0£¬´Ó¶ø¡Ý0£¬
¼´¡Ý¡£

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA£¬B£¬C£¬DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ðÌ⿨ָ¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡ÑOµÄ°ë¾¶OB´¹Ö±ÓÚÖ±¾¶AC£¬MΪAOÉÏÒ»µã£¬BMµÄÑÓ³¤Ïß½»¡ÑOÓÚN£¬¹ý
NµãµÄÇÐÏß½»CAµÄÑÓ³¤ÏßÓÚP£®
£¨1£©ÇóÖ¤£ºPM2=PA•PC£»
£¨2£©Èô¡ÑOµÄ°ë¾¶Îª2
3
£¬OA=
3
OM£¬ÇóMNµÄ³¤£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÇúÏßx2+4xy+2y2=1ÔÚ¶þ½×¾ØÕóM=
.
1a
b1
.
µÄ×÷ÓÃϱ任ΪÇúÏßx2-2y2=1£¬ÇóʵÊýa£¬bµÄÖµ£»
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
y=-1-
3
5
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
Éèa£¬b£¬c¾ùΪÕýʵÊý£®
£¨1£©Èôa+b+c=1£¬Çóa2+b2+c2µÄ×îСֵ£»
£¨2£©ÇóÖ¤£º
1
2a
+
1
2b
+
1
2c
¡Ý
1
b+c
+
1
c+a
+
1
a+b
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²20·Ö£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬PAÇСÑOÓÚµãA£¬DΪPAµÄÖе㣬¹ýµãDÒý¸îÏß½»¡ÑOÓÚB¡¢CÁ½µã£®ÇóÖ¤£º¡ÏDPB=¡ÏDCP£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÉèM=
.
10
02
.
£¬N=
.
1
2
0
01
.
£¬ÊÔÇóÇúÏßy=sinxÔÚ¾ØÕóMN±ä»»ÏµÄÇúÏß·½³Ì£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚ¼«×ø±êϵÖУ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos(¦È+
¦Ð
4
)
£¬ÒÔ¼«µãΪԭµã£¬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=1+
4
5
t
y=-1-
3
5
t
£¨tΪ²ÎÊý£©£¬ÇóÖ±Ïßl±»Ô²CËù½ØµÃµÄÏÒ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â²»µÈʽ£º|2x+1|-|x-4|£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Ñ¡×öÌ⣩ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
£¨B£©£¨Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»£©
¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=8£¬Æä¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e=
1
1
£¬²¢ÇÒ¾ØÕóM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³Éµã£¨-2£¬4£©£¬Çó¾ØÕóM2£®
£¨C£©£¨Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖغϣ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=3£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=-
3
t
y=1+t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÊÔÔÚÇúÏßCÉÏÒ»µãM£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×î´ó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

 Ñ¡×öÌ⣨ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣬²¢½«Ñ¡×÷±ê¼ÇÓÃ2BǦ±ÊÍ¿ºÚ£¬Ã¿Ð¡Ìâ10·Ö£¬¹²20·Ö£¬ÇëÔÚ´ðÌâÖ¸¶¨ÇøÓòÄÚ×÷´ð£¬½â´ðʱӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裩£®
A¡¢£¨Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²£©
Èçͼ£¬BDΪ¡ÑOµÄÖ±¾¶£¬AB=AC£¬AD½»BCÓÚE£¬ÇóÖ¤£ºAB2=AE•AD
B¡¢£¨Ñ¡ÐÞ4-2£º¾ØÐÎÓë±ä»»£©
ÒÑÖªa£¬bʵÊý£¬Èç¹û¾ØÕóM=
1a
b2
Ëù¶ÔÓ¦µÄ±ä»»½«Ö±Ïß3x-y=1±ä»»³Éx+2y=1£¬Çóa£¬bµÄÖµ£®
C¡¢£¨Ñ¡ÐÞ4-4£¬£º×ø±êϵÓë²ÎÊý·½³Ì£©
ÉèM¡¢N·Ö±ðÊÇÇúÏߦÑ+2sin¦È=0ºÍ¦Ñsin£¨¦È+
¦Ð
4
£©=
2
2
ÉϵĶ¯µã£¬ÅжÏÁ½ÇúÏßµÄλÖùØϵ²¢ÇóM¡¢N¼äµÄ×îС¾àÀ룮
D¡¢£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
Éèa£¬b£¬cÊDz»ÍêÈ«ÏàµÈµÄÕýÊý£¬ÇóÖ¤£ºa+b+c£¾
ab
+
bc
+
ca
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺ÔÚA¡¢B¡¢C¡¢DËÄСÌâÖÐÖ»ÄÜÑ¡×ö2Ì⣬ÿСÌâ10·Ö£¬¹²¼Æ20·Ö£®ÇëÔÚ´ð¾íÖ½Ö¸¶¨ÇøÓòÄÚ×÷´ð£®½â´ðӦд³öÎÄ×Ö˵Ã÷¡¢Ö¤Ã÷¹ý³Ì»òÑÝËã²½Ö裮
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ADÊÇ¡ÏBACµÄƽ·ÖÏߣ¬¡ÑO¹ýµãAÇÒÓëBC±ßÏàÇÐÓÚµãD£¬ÓëAB¡¢AC·Ö±ð½»ÓÚE£¬F£¬ÇóÖ¤£ºEF¡ÎBC£®

B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖªa£¬b¡ÊRÈô¾ØÕóM=
.
-1a
b3
.
Ëù¶ÔÓ¦µÄ±ä»»°ÑÖ±Ïßl£º2x-y=3±ä»»Îª×ÔÉí£¬Çóa£¬bµÄÖµ£®

C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½«²ÎÊý·½³Ì
x=2(t+
1
t
)
y=4(t-
1
t
)
£¨tΪ²ÎÊý£©»¯ÎªÆÕͨ·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖªa£¬bÊÇÕýÊý£¬ÇóÖ¤£º£¨a+
1
b
£©£¨2b+
1
2a
£©¡Ý
9
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸