8£®ÒÑÖªµãA£¬BΪÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÁ½µã£¬F1£¬F2ΪÍÖÔ²µÄ×óÓÒ½¹µã£¬ÇÒÂú×ãAF1¡ÎBF2£¬AF2ÓëBF1½»ÓÚµãP£®¼Ç¡ÏAF1x=¦Á£®
£¨1£©ÇóÖ¤£º|AF1|=$\frac{{b}^{2}}{a-ccos¦Á}$£¬|BF2|=$\frac{{b}^{2}}{a+ccos¦Á}$£»
£¨2£©µ±A£¬BÔÚÍÖÔ²ÉÏÒÆ¶¯Ê±£¬ÇóÖ¤£º¶¯µãPµÄ¹ì¼£Ò²ÊÇÒ»¸öÍÖÔ²£»
£¨3£©½«£¨1£©£¨2£©µÄ½áÂÛÍÆ¹ãµ½Ë«ÇúÏߣ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

·ÖÎö £¨1£©ÈçͼËùʾ£¬Éè|AF1|=m£¬|AF2|=2a-m£¬ÔÚ¡÷AF1F2£¬ÓÉÓàÏÒ¶¨Àí¼´¿ÉµÃ³ö|AF1|£¬Í¬Àí¿ÉµÃ£º|BF2|£»
£¨2£©ÓÉAF1¡ÎBF2£¬¿ÉµÃ$\frac{BP}{P{F}_{1}}=\frac{B{F}_{2}}{A{F}_{1}}$£¬ÓÚÊÇ$P{F}_{1}=\frac{A{F}_{1}}{B{F}_{2}+A{F}_{1}}B{F}_{1}$=$\frac{A{F}_{1}}{B{F}_{2}+A{F}_{1}}£¨2a-B{F}_{2}£©$£¬Í¬Àí¿ÉµÃ£ºPF2=$\frac{B{F}_{2}}{B{F}_{2}+A{F}_{1}}£¨2a-A{F}_{1}£©$£¬¿ÉµÃPF1+PF2¨T$\frac{{a}^{2}+{c}^{2}}{a}$£¾2c£¬¼´¿ÉÖ¤Ã÷£®
£¨3£©Àà±È£¨2£©ÀûÓÃÆ½ÐÐÏßµÄÐÔÖÊÓëË«ÇúÏߵ͍Òå¼°ÆäÐÔÖʼ´¿ÉÖ¤Ã÷£®

½â´ð £¨1£©Ö¤Ã÷£ºÈçͼËùʾ£¬
Éè|AF1|=m£¬|AF2|=2a-m£¬
ÔÚ¡÷AF1F2£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£º£¨2a-m£©2=m2+4c2-2m•2ccos¦Á£¬
»¯Îª£º$m=\frac{{b}^{2}}{a-ccos¦Á}$=|AF1|£¬
ͬÀí¿ÉµÃ£º|BF2|=$\frac{{b}^{2}}{a+ccos¦Á}$£»
£¨2£©Ö¤Ã÷£º¡ßAF1¡ÎBF2£¬¡à$\frac{BP}{P{F}_{1}}=\frac{B{F}_{2}}{A{F}_{1}}$£¬
¡à$\frac{B{F}_{1}}{P{F}_{1}}=\frac{B{F}_{2}+A{F}_{1}}{A{F}_{1}}$£¬
¡à$P{F}_{1}=\frac{A{F}_{1}}{B{F}_{2}+A{F}_{1}}B{F}_{1}$=$\frac{A{F}_{1}}{B{F}_{2}+A{F}_{1}}£¨2a-B{F}_{2}£©$£¬
ͬÀí¿ÉµÃ£ºPF2=$\frac{A{F}_{2}}{B{F}_{2}+A{F}_{1}}B{F}_{2}$=$\frac{B{F}_{2}}{B{F}_{2}+A{F}_{1}}£¨2a-A{F}_{1}£©$£¬
¡àPF1+PF2=2a-$\frac{2A{F}_{1}•B{F}_{2}}{B{F}_{2}+A{F}_{1}}$=2a-$\frac{\frac{2{b}^{2}}{a-ccos¦Á}•\frac{{b}^{2}}{a+ccos¦Á}}{\frac{{b}^{2}}{a-ccos¦Á}+\frac{{b}^{2}}{a+ccos¦Á}}$=2a-$\frac{{b}^{2}}{a}$=$\frac{{a}^{2}+{c}^{2}}{a}$£¾2c£¬
¡à¶¯µãPµÄ¹ì¼£Ò²ÊÇÒ»¸öÍÖÔ²£¬½¹µãÈÔȻΪF1£¬F2£¬ÖÐÐÄΪԭµãO£¬³¤Ö᳤Ϊ$\frac{{a}^{2}+{c}^{2}}{a}$£¨£¼2a£©£®
£¨3£©½â£º¶ÔÓÚË«ÇúÏߣº$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¬b£¾0£©£¬¿ÉµÃ£º
£¨i£©|BF2|=$\frac{{b}^{2}}{a-ccos¦Á}$£¬|AF1|=$\frac{{b}^{2}}{a+ccos¦Á}$£®
£¨ii£©µ±A£¬BÔÚË«ÇúÏßÉÏÒÆ¶¯Ê±£¬¶¯µãPµÄ¹ì¼£Ò²ÊÇË«ÇúÏߣ®
Àà±È£¨2£©ÀûÓÃÆ½ÐÐÏßµÄÐÔÖÊÓëË«ÇúÏߵ͍Òå¼°ÆäÐÔÖʼ´¿ÉÖ¤Ã÷£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëË«ÇúÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Æ½ÐÐÏßµÄÐÔÖÊ£¬¿¼²éÁËÀà±ÈÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÊý×Ö1£¬2£¬3£¬4£¬5£¬6£¬7£¬8£¬9£®
£¨1£©ÄÜ×é³É¶àÉÙ¸öÊý×Ö²»Öظ´µÄËÄλżÊý£¿
£¨2£©ÄÜ×é³É¶ÅÉÙ¸ö°ÙλÊý×Ö´óÓÚʮλÊý×ÖÇÒʮλÊý×Ö´óÓÚ¸öλÊý×ÖµÄÈýλÊý£¿
£¨3£©Èç¹û°ÑÕâ9¸öÊý×ÖÆ½¾ù·Ö³ÉÈý×飬ÇóÈý×é¶¼³ÉµÈ²îÊýÁеÄÓжàÉÙÖÖ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªD£¨X£©=4£¬D£¨Y£©=1£¬¦ÑXY=0.6£¬ÇóD£¨X+Y£©£¬D£¨3X-2Y£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊǾØÐΣ¬ÇÒAD=2£¬AB=1£¬PA=1£¬PA¡ÍÆ½ÃæABCD£¬E¡¢F·Ö±ðÊÇÏß¶ÎAB¡¢BCµÄÖе㣮
£¨¢ñ£©ÇóÖ±ÏßACÓëÆ½ÃæPCDËù³É½ÇµÄÕýÏÒÖµ£»
£¨¢ò£©Åжϲ¢ËµÃ÷PAÉÏÊÇ·ñ´æÔÚµãG£¬Ê¹µÃEG¡ÎÆ½ÃæPFD£¿Èô´æÔÚ£¬Çó³ö$\frac{PG}{GA}$µÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬OÊǵ×ÃæABCD¶Ô½ÇÏߵĽ»µã£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍÆ½ÃæACC1A1£»
£¨¢ò£©ÇóÖ±ÏßBC1ÓëÆ½ÃæACC1A1Ëù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{8}$$+\frac{{y}^{2}}{4}$=1£¬OÎª×ø±êÔ­µã£®
£¨1£©É趯ֱÏßL½»ÍÖÔ²EÓÚA¡¢BÁ½µã£¬ÇÒ$\overrightarrow{OA}$$¡Í\overrightarrow{OB}$
¢ÙÇóÖ¤£º$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$Ϊ¶¨Öµ£»
¢ÚÇó¡÷OABµÄÃæ»ýµÄȡֵ·¶Î§£®
£¨2£©¹ýM£¨x1y1£©µÄÖ±Ïßl1£ºx1x+2y1y=8$\sqrt{2}$Óë¹ýN£¨x2£¬y2£©µÄÖ±Ïßl2£ºx2x+2y2y=8$\sqrt{2}$µÄ½»µãP£¨x0£¬y0£©ÔÚÍÖÔ²EÉÏ£¬Ö±ÏßMNÓëÍÖÔ²EµÄÁ½×¼Ïß·Ö±ð½»ÓÚG¡¢HÁ½µã£¬Çó$\overrightarrow{OG}$$•\overrightarrow{OH}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÔÚÖ±ÈýÀâÖùABC-A¡äB¡äC¡äÖУ¬µ×ÃæÊDZ߳¤ÎªaµÄÕýÈý½ÇÐΣ¬AA¡ä=$\sqrt{3}$a£¬ÔòÖ±ÏßAB¡äÓë²àÃæAC¡äËù³É½ÇµÄÕýÇÐֵΪ$\frac{\sqrt{39}}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ËıßÐÎABCDÊÇÕý·½ÐΣ¬PD¡ÍÃæABCD£¬PD¡ÎAQ£¬ÇÒAQ=AB=$\frac{1}{2}$PD£¬MΪPCÖе㣮
£¨1£©ÇóÖ¤£ºPD¡ÍQM£»
£¨2£©Çó¶þÃæ½ÇB-PQ-A´óСµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸