精英家教网 > 高中数学 > 题目详情
将正方体(如图)截去两个三棱锥,得到如图所示的几何体,则该几何体的主视图为(  )
A、
B、
C、
D、
考点:简单空间图形的三视图
专题:空间位置关系与距离
分析:正视图是从前向后看得到的视图,结合选项即可作出判断.
解答: 解:正视图是从前向后看得到的视图,几何体的轮廓是正方形,AB1是实线,D1C是虚线,结合选可知B符合.
故选:B.
点评:本题考查了简单组合体的三视图,属于基础题,关键掌握正视图是从前向后看得到的视图.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若F1,F2是双曲线
x2
4
-y2=1的左,右焦点,点P是该双曲线的顶点,则|PF1|-|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体是三视图(单位:cm)如图所示,则这个几何体的体积是
 
cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(
1
10
)
|x|
在[-2,3]上的根的个数是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥O-ABCD中,OA=AB,则OA与底面ABCD所成角的正弦值等于(  )
A、
1
2
B、
3
3
C、
2
2
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对x>0,y>0,有f(x,y)=(x+4y)(
2
x
+
1
2y
)≥m恒成立,那么实数m的取值范围是(  )
A、(-∞,4]
B、(8,+∞)
C、(-∞,0)
D、(-∞,8]

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知双曲线
x2
a2
-
y2
b2
=1(a>b>0)的右焦点为F,过F的直线l交双曲线的渐近线于A、B两点,且直线l的倾斜角是渐近线OA倾斜角的2倍,若
AF
=2
FB
,则该双曲线的离心率为(  )
A、
3
2
4
B、
2
3
3
C、
30
5
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边;
(1)若△ABC面积S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若sinA=2cosBsinC试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A′B′C′的各顶点都在同一球面,AB=2,AC=AA′=3,BC=4,求该球的体积.

查看答案和解析>>

同步练习册答案