精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+x2-xlna,a>1.若函数y=|f(x)-t|-2011有三个零点,则实数t的值是________.

2012
分析:先判断函数f(x)的极小值,再由y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,根据t-1应是f(x)的极小值,解出t.
解答:f′(x)=axlna+2x-lna=2x+(ax-1)lna
由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0,
故函数f(x)在(0,+∞)上单调递增
当a>0,a≠1时,因为f′(0)=0,且f′(x)在R上单调递增,
故f′(x)=0有唯一解x=0
所以x,f′(x),f(x)的变化情况如下表所示:

又函数y=|f(x)-t|-2011有三个零点,所以方程f(x)=t±2011有三个根,
而t+2011>t-2011,所以t-2011=(f(x))min=f(0)=1,解得t=2012,
故答案为2012.
点评:本题考查函数的零点,用导数判断函数单调性,利用导数研究函数极值,体现了转化的思想,以及学生灵活应用知识分析解决问题的能力和运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案