分析 (1)利用抛物线C:x2=2py(p>0)上一点M(x0,4)到焦点F的距离为5,根据抛物线的定义,求出p,即可求抛物线C的方程;
(2)可设直线AB的方程为y=kx+m,代入抛物线方程x2=4y得x2-4kx-4m=0.设A、B两点的坐标分别是(x1,y1)、(x2,y2),x1x2=-4m.由$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,得$\frac{{x}_{1}}{{x}_{2}}$=λ,由此可以推出$\overrightarrow{QP}•$$\overrightarrow{QA}$=$λ\overrightarrow{QP}•\overrightarrow{QB}$.
解答 解:(1)∵抛物线C:x2=2py(p>0)上一点M(x0,4)到焦点F的距离为5,![]()
∴4+$\frac{p}{2}$=5,
∴p=2,
∴抛物线C的方程x2=4y;
(2)设A(x1,y1),B(x2,y2)
由$\overrightarrow{AP}$=$λ\overrightarrow{PB}$,得$\frac{{x}_{1}}{{x}_{2}}$=λ,
设$\overrightarrow{QP}•$$\overrightarrow{QA}$=μ$\overrightarrow{QP}$•$\overrightarrow{QB}$成立,则$\overrightarrow{QP}$•($\overrightarrow{QA}$-μ$\overrightarrow{QB}$)=0
∴2m[y1-μy2+(1-μ)m]=0
从而$\frac{{{x}_{1}}^{2}}{4}$-μ•$\frac{{{x}_{2}}^{2}}{4}$+(1-μ)m=0,
设l方程为:y=kx+m,代入抛物线方程,得:x2-4kx-4m=0,
所以x1•x2=-4m,
把x1•x2=-4m;
代入上式得($\frac{{x}_{1}}{{x}_{2}}$)2-(1-μ)$\frac{{x}_{1}}{{x}_{2}}$-μ=0,
则λ2+(1-μ)λ-μ=0,
所以λ=-1或λ=μ,而显然λ>0,
所以λ=μ,
所以恒有$\overrightarrow{QP}•$$\overrightarrow{QA}$=$λ\overrightarrow{QP}•\overrightarrow{QB}$成立.
点评 本题考查直线和圆锥曲线的位置关系,考查圆的方程,考查向量知识,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com