精英家教网 > 高中数学 > 题目详情
9.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρcosθ-ρsinθ+3=0,曲线D的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.$(α为参数).
(1)将曲线C的极坐标方程化为直角坐标方程,曲线D的参数方程化为普通方程;
(2)若点P为直线$\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=4+\sqrt{2}t\end{array}\right.$(t为参数)上的动点,点Q为曲线D上的动点,求P,Q两点间距离的最小值.

分析 (1)由曲线C的极坐标方程ρcosθ-ρsinθ+3=0,能求出曲线C的直角坐标方程;因为曲线D的参数方程消去参数α,能求出曲线D的普通方程.
(2)将直线方程化为普通方程x-y+3=0,求出圆D的圆心D(2,1)到直线:x-y+3=0的距离d,得到PQ的最小值为$d-\sqrt{2}=\sqrt{2}$.

解答 解:(1)因为曲线C的极坐标方程ρcosθ-ρsinθ+3=0,
所以曲线C的直角坐标方程为:x-y+3=0.…(3分)
因为曲线D的参数方程为$\left\{{\begin{array}{l}{x=2+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}}\right.$(α为参数).
所以曲线D的普通方程为(x-2)2+(y-1)2=2…(6分)
(2)将直线方程化为普通方程 x-y+3=0,…(9分)
圆D:(x-2)2+(y-1)2=2的圆心D(2,1)到直线:x-y+3=0的距离:
$d=\frac{{|{2-1+3}|}}{{\sqrt{2}}}=2\sqrt{2}$,…(12分)
所以PQ的最小值为$d-\sqrt{2}=\sqrt{2}$. …(14分)

点评 本题考查直线的直角坐标方程的求法,考查圆的普通方程的求法,考查两点间距离的最小值的求法,考查直角坐标方程、极坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知a,b,c∈(0,+∞) 且 a≥b≥c,a+b+c=12,ab+bc+ca=45,则a的最小值为(  )
A.5B.10C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{24}{7-cos2θ}$.
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于不同两点A,B,求tanα的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a∈R,函数f(x)=2ln(x-2)-a(x-2)2
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个相异零点x1,x2,求证x1x2+4>2(x1+x2)+e(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是(  )
A.ρcosθ=1B.ρsinθ=1C.ρ=cosθD.ρ=sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数x,y满足约束条件 $\left\{\begin{array}{l}{4x-y-10≤0}\\{x-2y+8≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的x≥0,y≥0最大值为12,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在(0,+∞)上的函数$f(x)=\frac{1}{2}{x^2}+2ax,g(x)=3{a^2}lnx+b$,其中a>0.设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.则b的最大值为(  )
A.$\frac{3}{2}{e^2}$B.$\frac{3}{2}{e^{\frac{2}{3}}}$C.$\frac{2}{3}{e^{\frac{2}{3}}}$D.$\frac{1}{3}{e^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在下列各散点图中,两个变量具有正相关关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3-3x2-9x+1(x∈R).
(1)求函数f(x)的单调区间.
(2)若f(x)-2a+1≥0对?x∈[-2,4]恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案