分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)根据函数的单调性求出端点值和极值,从而求出f(x)的最小值,得到关于a的不等式,求出a的范围即可.
解答 解:(1)f′(x)=3x2-6x-9,
令f′(x)>0,解得:x<-1或x>3,
令f′(x)<0,解得:-1<x<3,
故函数f(x)的单调增区间为(-∞,-1),(3,+∞),单调减区间为(-1,3);
(2)由(1)知f(x)在[-2,-1]上单调递增,在[-1,3]上单调递减,在[3,4]上单调递增,
又f(-2)=-1,f(3)=-26,f(3)<f(-2),
∴f(x)min=-26,
∵f(x)-2a+1≥0对?x∈[-2,4]恒成立,
∴f(x)min≥2a-1,即2a-1≤-26,
∴a≤-$\frac{25}{2}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 既不充分也不必要条件 | ||
| C. | 充分条件 | D. | 必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 31 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 人数 | 数学 | |||
| 优秀 | 良好 | 及格 | ||
| 地理 | 优秀 | 7 | 20 | 5 |
| 良好 | 9 | 18 | 6 | |
| 及格 | a | 4 | b | |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com