精英家教网 > 高中数学 > 题目详情
10.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的(  )
A.充要条件B.既不充分也不必要条件
C.充分条件D.必要条件

分析 非有志者不能至也”,可得能够到达“奇伟、瑰怪,非常之观”的必须有志,而有志者是未必到达“奇伟、瑰怪,非常之观”的.即可判断出结论.

解答 解:非有志者不能至也”,可得能够到达“奇伟、瑰怪,非常之观”的必须有志,而有志者是未必到达“奇伟、瑰怪,非常之观”的.
因此有志是到达“奇伟、瑰怪,非常之观”的必要条件.
故选:D.

点评 本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{24}{7-cos2θ}$.
(1)求曲线C的普通方程;
(2)若直线l与曲线C交于不同两点A,B,求tanα的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在(0,+∞)上的函数$f(x)=\frac{1}{2}{x^2}+2ax,g(x)=3{a^2}lnx+b$,其中a>0.设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.则b的最大值为(  )
A.$\frac{3}{2}{e^2}$B.$\frac{3}{2}{e^{\frac{2}{3}}}$C.$\frac{2}{3}{e^{\frac{2}{3}}}$D.$\frac{1}{3}{e^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在下列各散点图中,两个变量具有正相关关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是(  )
A.k≥1B.k≥2C.k≥3D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数.
(1)求z1及$\overline{z_1}$;
(2)求z2及|z1+z2|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1,直角梯形ABCD,AD∥BC,∠BAD=90°,EF∥AB,将四边形CDFE沿EF折起,使DF⊥AF,BD与平面ABEF所成角为45°,DF=2CE=2,AB=$\sqrt{2}$,如图2

(1)求证:AE⊥平面BDF
(2)设$\overrightarrow{AM}$=λ$\overrightarrow{AF}$,λ∈[0,1],是否存在符合条件的点M,使得C-BD-M为直二面角,若存在,求出相应的λ值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x3-3x2-9x+1(x∈R).
(1)求函数f(x)的单调区间.
(2)若f(x)-2a+1≥0对?x∈[-2,4]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin(πx+$\frac{π}{4}$)和函数g(x)=cos(πx+$\frac{π}{4}$)在区间[-$\frac{9}{4}$,$\frac{3}{4}$]上的图象交于A,B,C三点,则△ABC的面积是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案