2£®Èçͼ1£¬Ö±½ÇÌÝÐÎABCD£¬AD¡ÎBC£¬¡ÏBAD=90¡ã£¬EF¡ÎAB£¬½«ËıßÐÎCDFEÑØEFÕÛÆð£¬Ê¹DF¡ÍAF£¬BDÓëÆ½ÃæABEFËù³É½ÇΪ45¡ã£¬DF=2CE=2£¬AB=$\sqrt{2}$£¬Èçͼ2

£¨1£©ÇóÖ¤£ºAE¡ÍÆ½ÃæBDF
£¨2£©Éè$\overrightarrow{AM}$=¦Ë$\overrightarrow{AF}$£¬¦Ë¡Ê[0£¬1]£¬ÊÇ·ñ´æÔÚ·ûºÏÌõ¼þµÄµãM£¬Ê¹µÃC-BD-MΪֱ¶þÃæ½Ç£¬Èô´æÔÚ£¬Çó³öÏàÓ¦µÄ¦ËÖµ£¬·ñÔò˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÍƵ¼³öEF¡ÍDF£¬DF¡ÍAF£¬´Ó¶øDF¡ÍÆ½ÃæABEF£¬½ø¶øDF¡ÍBF£¬DF¡ÍAE£¬Óɴ˵õ½ËıßÐÎABEFΪÕý·½ÐΣ¬´Ó¶øAE¡ÍBF£¬ÓÉ´ËÄÜÖ¤Ã÷AE¡ÍÆ½ÃæBDF£®
£¨2£©ÒÔFÎª×ø±êÔ­µã£¬FE¡¢FA¡¢FDËùÔÚÖ±Ïß·Ö±ðΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³ö´æÔÚ·ûºÏÌõ¼þµÄµãMʹµÃC-BD-MΪֱ¶þÃæ½Ç£¬ÇÒ¦Ë=1£®

½â´ð Ö¤Ã÷£º£¨1£©ÓÉÒÑÖªÔÚÖ±½ÇÌÝÐÎABCDÖУ¬EF¡ÎAB£¬µÃEF¡ÍDF£®
ÓÖDF¡ÍAF£¬¡àDF¡ÍÆ½ÃæABEF£¬¡àDF¡ÍBF£¬DF¡ÍAE£®
ÓÖBDÓëÆ½ÃæABEFËù³É½ÇΪ45¡ã£¬¡àDF=BF=2£®
ÔÚRt¡÷BEFÖУ¬BE=$\sqrt{B{F}^{2}-A{B}^{2}}$=$\sqrt{2}$£¬¡àËıßÐÎABEFΪÕý·½ÐΣ®
¡àAE¡ÍBF£¬¡àAE¡ÍÆ½ÃæBDF£®¡­£¨5·Ö£©
½â£º£¨2£©ÒÔFÎª×ø±êÔ­µã£¬FE¡¢FA¡¢FDËùÔÚÖ±Ïß·Ö±ðΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Èçͼ£¬
ÔòF£¨0£¬0£¬0£©£¬A£¨0£¬$\sqrt{2}$£¬0£©£¬B£¨$\sqrt{2}£¬\sqrt{2}$£¬0£©C£¨$\sqrt{2}$£¬0£¬1£©£¬D£¨0£¬0£¬2£©£¬¡­£¨6·Ö£©
$\overrightarrow{BM}$=$\overrightarrow{BA}+\overrightarrow{AM}$=£¨-$\sqrt{2}$£¬0£¬0£©+¦Ë£¨0£¬-$\sqrt{2}$£¬0£©=£¨-$\sqrt{2}£¬-\sqrt{2}¦Ë£¬0$£©£¬
$\overrightarrow{BD}$=£¨-$\sqrt{2}£¬-\sqrt{2}£¬2$£©£¬$\overrightarrow{DC}$=£¨$\sqrt{2}£¬0£¬-1$£©£¬¡­£¨7·Ö£©
ÉèÆ½ÃæBCDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬Æ½ÃæBDMµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{n}$=£¨a£¬b£¬c£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{BD}•\overrightarrow{m}=\sqrt{2}x+\sqrt{2}y-2z=0}\\{\overrightarrow{DC}•\overrightarrow{m}=\sqrt{2}x-z=0}\end{array}\right.$£¬Áîx=1£¬µÃ$\overrightarrow{m}$=£¨1£¬1£¬$\sqrt{2}$£©£¬¡­£¨8·Ö£©
$\left\{\begin{array}{l}{\overrightarrow{BM}•\overrightarrow{n}=a+¦Ëb=0}\\{\overrightarrow{BD}•\overrightarrow{n}=\sqrt{2}a+\sqrt{2}b-2c=0}\end{array}\right.$£¬Áîa=-¦Ë£¬µÃ$\overrightarrow{n}$=£¨-$¦Ë£¬1£¬\frac{\sqrt{2}-\sqrt{2}¦Ë}{2}$£©£¬¡­£¨10·Ö£©
ÓÉ$\overrightarrow{m}•\overrightarrow{n}$=0£¬µÃ-$¦Ë+1+\frac{\sqrt{2}-\sqrt{2}¦Ë}{2}¡Á\sqrt{2}=0$£¬½âµÃ¦Ë=1¡Ê[0£¬1]£¬¡­£¨11·Ö£©
ËùÒÔ´æÔÚ·ûºÏÌõ¼þµÄµãMʹµÃC-BD-MΪֱ¶þÃæ½Ç£¬ÇÒ¦Ë=1£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÏßÃæ´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÂú×ã¶þÃæ½ÇΪֱ¶þÃæ½ÇµÄµãµÄÈ·¶¨ÓëÇ󷨣¬¿¼²é¿Õ¼äÖÐÏßÏß¡¢ÏßÃæ¡¢ÃæÃæ¼äµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}ÊÇÊ×ÏîΪa1£¬¹«²îΪdµÄµÈ²îÊýÁУ®
£¨1£©Èôa1=-11£¬d=2£¬bn=3an£¬ÊýÁÐ{bn}µÄǰnÏî»ý¼ÇΪBn£¬ÇÒBn0=1£¬Çón0µÄÖµ£»
£¨2£©Èôa1d¡Ù0£¬ÇÒa13+a23+¡­+an3=£¨a1+a2+¡­+an£©2ºã³ÉÁ¢£¬Çó{an}µÄͨÏʽ£»
£¨3£©Éèn¡¢k¡ÊN*£¬n¡Ý2£¬ÊÔÖ¤×éºÏÊýÂú×ãkCnk=nCn-1k-1£»¹Û²ìC20a1-C21a2+C22a3=0£¬C30a1-C31a2+C32a3-C33a4=0£¬C40a1-C41a2+C42a3-C43a4+C44a5=0£¬¡­£¬Çëд³ö¹ØÓڵȲîÊýÁÐ{an}µÄÒ»°ã½áÂÛ£¬²¢ÀûÓÃkCnk=nCn-1k-1Ö¤Ã÷Ö®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®´üÖÐ×°ÓÐ9¸öÐÎ×´´óСÏàͬµ«ÑÕÉ«²»Í¬µÄСÇò£¬ÆäÖкìÉ«¡¢À¶É«¡¢»ÆÉ«Çò¸÷3¸ö£¬ÏÖ´ÓÖÐËæ»úµØÁ¬È¡3´ÎÇò£¬Ã¿´ÎÈ¡1¸ö£¬¼ÇʼþAΪ¡°3¸öÇò¶¼ÊǺìÇò¡±£¬Ê¼þBΪ¡°3 ¸öÇòÑÕÉ«²»È«Ïàͬ¡±
£¨¢ñ£©Èôÿ´ÎÈ¡ºó²»·Å»Ø£¬·Ö±ðÇó³öʼþAºÍʼþBµÄ¸ÅÂÊ£¨ÓÃÊý×Ö×÷´ð£©£»
£¨¢ò£©Èôÿ´ÎÈ¡ºó·Å»Ø£¬·Ö±ðÇó³öʼþAºÍʼþBµÄ¸ÅÂÊ£¨ÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Íõ°²Ê¯ÔÚ¡¶ÓΰýìøÉ½¼Ç¡·ÖÐдµÀ¡°ÊÀÖ®ÆæÎ°¡¢¹å¹Ö£¬·Ç³£Ö®¹Û£¬³£ÔÚÓÚÏÕÔ¶£¬¶øÈËÖ®Ëùº±ÖÁÑÉ£¬¹Ê·ÇÓÐÖ¾Õß²»ÄÜÖÁÒ²¡±£¬ÇëÎÊ¡°ÓÐÖ¾¡±Êǵ½´ï¡°ÆæÎ°¡¢¹å¹Ö£¬·Ç³£Ö®¹Û¡±µÄ£¨¡¡¡¡£©
A£®³äÒªÌõ¼þB£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ
C£®³ä·ÖÌõ¼þD£®±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚÒ»´ÎÊýѧ¾ºÈüÑ¡°Î²âÊÔÖУ¬Ã¿È˽â3µÀÌ⣬ÖÁÉÙ½â¶Ô2µÀÌâ²ÅÄÜͨ¹ý²âÊÔ±»Ñ¡ÉÏ£¬Éèijͬѧ½â¶ÔÿµÀÌâµÄ¸ÅÂʾùΪp£¨0£¼p£¼1£©£¬ÇÒ¸ÃͬѧÊÇ·ñ½â¶ÔÿµÀÌ⻥Ïà¶ÀÁ¢£¬Èô¸Ãͬѧͨ¹ý²âÊÔ±»Ñ¡ÉϵĸÅÂÊÇ¡ºÃÊÇp£¬ÔòpµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{2}{3}$D£®$\frac{2}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¬Ç°nÏîºÍΪSn£¬Èôan£¾0£¬q£¾1£¬a3+a5=20£¬a2•a6=20£¬ÔòS5=£¨¡¡¡¡£©
A£®30B£®31C£®62D£®63

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¸´ÊýzÂú×ã$\frac{z+1}{2i}$=1-i£¬ÆäÖÐiÊÇÐéÊýµ¥Î»£¬Ôò¸´ÊýzµÄÐ鲿Ϊ£¨¡¡¡¡£©
A£®2B£®-2C£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑ֪ijÖÐѧ¸ßÈýÎĿưàѧÉú¹²ÓÐ800È˲μÓÁËÊýѧÓëµØÀíµÄˮƽ²âÊÔ£¬Ñ§Ð£¾ö¶¨ÀûÓÃËæ»úÊý±í·¨´ÓÖгéÈ¡100È˽øÐгɼ¨³éÑùµ÷²é£¬ÏȽ«800È˰´001£¬002£¬¡­£¬800½øÐбàºÅ£®
£¨1£©Èç¹û´ÓµÚ8ÐеÚ7ÁеÄÊý¿ªÊ¼ÏòÓÒ¶Á£¬ÇëÄãÒÀ´Îд³ö×îÏȼì²éµÄ3¸öÈ˵ıàºÅ£»
£¨ÏÂÃæÕªÈ¡Á˵Ú7Ðе½µÚ9ÐУ©
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29 78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
£¨2£©³éÈ¡µÄ100È˵ÄÊýѧÓëµØÀíµÄˮƽ²âÊԳɼ¨ÈçÏÂ±í£º
³É¼¨·ÖΪÓÅÐã¡¢Á¼ºÃ¡¢¼°¸ñÈý¸öµÈ¼¶£»ºáÏò£¬×ÝÏò·Ö±ð±íʾµØÀí³É¼¨ÓëÊýѧ³É¼¨£¬ÀýÈ磺±íÖÐÊýѧ³É¼¨ÎªÁ¼ºÃµÄ¹²ÓÐ20+18+4=42
¢ÙÈôÔÚ¸ÃÑù±¾ÖУ¬Êýѧ³É¼¨ÓÅÐãÂÊÊÇ30%£¬Çóa£¬bµÄÖµ£º
 ÈËÊý Êýѧ
 ÓÅÐã Á¼ºÃ ¼°¸ñ
 µØÀí ÓÅÐã 7 20 5
 Á¼ºÃ 9 18 6
 ¼°¸ñ a 4 b
¢ÚÔÚµØÀí³É¼¨¼°¸ñµÄѧÉúÖУ¬ÒÑÖªa¡Ý11£¬b¡Ý7£¬ÇóÊýѧ³É¼¨ÓÅÐãµÄÈËÊý±È¼°¸ñµÄÈËÊýÉٵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®´Óa£¬b£¬c£¬d£¬eÕâ5¸öÔªËØÖÐÈ¡³ö4¸ö·ÅÔÚËĸö²»Í¬µÄ¸ñ×ÓÖУ¬ÇÒÔªËØb²»ÄÜ·ÅÔÚµÚ¶þ¸ö¸ñ×ÓÖУ¬Îʹ²ÓÐ96ÖÖ²»Í¬µÄ·Å·¨£®£¨ÓÃÊýѧ×÷´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸