精英家教网 > 高中数学 > 题目详情
13.袋中装有9个形状大小相同但颜色不同的小球,其中红色、蓝色、黄色球各3个,现从中随机地连取3次球,每次取1个,记事件A为“3个球都是红球”,事件B为“3 个球颜色不全相同”
(Ⅰ)若每次取后不放回,分别求出事件A和事件B的概率(用数字作答);
(Ⅱ)若每次取后放回,分别求出事件A和事件B的概率(用数字作答).

分析 (Ⅰ)每次取后不放回,基本事件总数n=9×8×7=504,事件A包含的基本事件个数mA=3×2×1=6,事件B的对立事件是“3个球颜色全相同”,由此利用等可能事件概率计算公式能求出事件A的概率,利用对立事件概率计算公式能求出事件B的概率.(Ⅱ)每次取后放回,基本事件总数n′=9×9×9=729,事件A包含的基本事件个数mA′=3×3×3=27,事件B的对立事件是“3个球颜色全相同”,由此利用等可能事件概率计算公式能求出事件A的概率,利用对立事件概率计算公式能求出事件B的概率.

解答 解:(Ⅰ)袋中装有9个形状大小相同但颜色不同的小球,其中红色、蓝色、黄色球各3个,
现从中随机地连取3次球,每次取1个,记事件A为“3个球都是红球”,事件B为“3 个球颜色不全相同”
每次取后不放回,基本事件总数n=9×8×7=504,
事件A包含的基本事件个数mA=3×2×1=6,
事件B的对立事件是“3个球颜色全相同”,
∴事件A的概率p(A)=$\frac{{m}_{A}}{n}$=$\frac{6}{504}$=$\frac{1}{84}$.
事件B的概率p(B)=1-$\frac{6+6+6}{504}$=$\frac{27}{28}$.
(Ⅱ)每次取后放回,基本事件总数n′=9×9×9=729,
事件A包含的基本事件个数mA′=3×3×3=27,
事件B的对立事件是“3个球颜色全相同”,
∴事件A的概率p(A)=$\frac{{{m}_{A}}^{'}}{{n}^{'}}$=$\frac{27}{729}$=$\frac{1}{27}$.
事件B的概率p(B)=1-$\frac{27+27+27}{729}$=$\frac{8}{9}$.

点评 本题考查概率的求法,考查有放回抽取、不放回抽取、古典概型、对立事件概率计算公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知抛物线C:x2=2py(p>0)的焦点F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线的切线交x轴于点D,交y轴于点Q,交直线l:y=$\frac{p}{2}$于点M,|FD|=2,∠AFD=60°.
(1)求证:△AFQ为等腰三角形,并求抛物线C的方程;
(2)求△DFM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是(  )
A.ρcosθ=1B.ρsinθ=1C.ρ=cosθD.ρ=sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在(0,+∞)上的函数$f(x)=\frac{1}{2}{x^2}+2ax,g(x)=3{a^2}lnx+b$,其中a>0.设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.则b的最大值为(  )
A.$\frac{3}{2}{e^2}$B.$\frac{3}{2}{e^{\frac{2}{3}}}$C.$\frac{2}{3}{e^{\frac{2}{3}}}$D.$\frac{1}{3}{e^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数y=x2的图象在点(x0,x02)处的切线为直线l,若直线l与函数y=lnx(x∈(0,1))的图象相切,则满足(  )
A.x0∈($\sqrt{2}$,$\sqrt{3}$)B.x0∈(1,$\sqrt{2}$)C.x0∈(0,$\frac{1}{2}$)D.x0∈($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在下列各散点图中,两个变量具有正相关关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式$\left\{\begin{array}{l}y≤2x\\ y-\frac{1}{2}x≥0\\ x+y≤k\end{array}\right.$表示的区域面积大于或等于$\frac{3}{2}$,则实数k的取值范围是(  )
A.k≥1B.k≥2C.k≥3D.k≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1,直角梯形ABCD,AD∥BC,∠BAD=90°,EF∥AB,将四边形CDFE沿EF折起,使DF⊥AF,BD与平面ABEF所成角为45°,DF=2CE=2,AB=$\sqrt{2}$,如图2

(1)求证:AE⊥平面BDF
(2)设$\overrightarrow{AM}$=λ$\overrightarrow{AF}$,λ∈[0,1],是否存在符合条件的点M,使得C-BD-M为直二面角,若存在,求出相应的λ值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sin x+$\frac{1}{x}$+a,x∈[-5π,0)∪(0,5π].记函数f(x)的最大值为M,最小值为m,若M+m=20,则实数a的值为10.

查看答案和解析>>

同步练习册答案