精英家教网 > 高中数学 > 题目详情
15.已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数.
(1)求z1及$\overline{z_1}$;
(2)求z2及|z1+z2|.

分析 (1)把已知等式变形,再由复数代数形式的乘除运算化简得复数z1,则$\overline{z_1}$可求;
(2)设z2=a+2i,a∈R,把z1,z2代入z1•z2化简,再结合已知条件看求出a的值,则z2可求,然后根据复数求模公式计算得答案.

解答 解:(1)由(z1-2)(1+i)=1-i,
得${z}_{1}=\frac{1-i}{1+i}+2=\frac{(1-i)^{2}}{(1+i)(1-i)}+2=2-i$.
则$\overline{{z}_{1}}=2+i$.
(2)设z2=a+2i,a∈R,则z1•z2=(2-i)(a+2i)=(2a+2)+(4-a)i.
∵z1•z2∈R,∴a=4.
∴z2=4+2i.$|{{z_1}+{z_2}}|=|{6+i}|=\sqrt{37}$.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念以及复数模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在△ABC中,P在△ABC的三边上,MN是△ABC外接圆的直径,若AB=2,BC=3,AC=4,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆O的周长和面积同时等分成两部分的函数称为圆煌一个“太极函数”下列有关说法中:
①对圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y-1)2=1的一个太极函数;
③存在圆O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圆O的太极函数;
④直线(m+1)x-(2m+1)y-1=0所对应的函数一定是圆O:(x-2)2+(y-1)2=R2(R>0)的太极函数.
所有正确说法的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,则z=x+y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的(  )
A.充要条件B.既不充分也不必要条件
C.充分条件D.必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)在(0,+∞)上可导,且满足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x)且g(a)=2016,则a=-502.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}的公比为q,前n项和为Sn,若an>0,q>1,a3+a5=20,a2•a6=20,则S5=(  )
A.30B.31C.62D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=$\frac{1}{3}$x3+mx的导函数有零点,则实数m的取值范围是(  )
A.m>0B.m≤0C.m>1D.m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系中,曲线C的参数方程:$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$,直线l的参数方程为$\left\{\begin{array}{l}x=a+2t\\ y=1-t\end{array}\right.$.
(1)若直线l与曲线C只有一个公共点,求实数a;
(2)若点P,Q分别为直线l与曲线C上的动点,若${|{PQ}|_{min}}=\frac{{\sqrt{5}}}{5}$,求实数a.

查看答案和解析>>

同步练习册答案