精英家教网 > 高中数学 > 题目详情
3.若实数x,y满足$\left\{\begin{array}{l}2x-y-2≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,则z=x+y的最大值为(  )
A.1B.2C.3D.4

分析 作出不等式组对应的平面区域,设z=x+y,利用数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
由z=x+y得y=-x+z,
平移直线y=-x+z,由图象可知当直线y=-x+z经过点A时,
直线y=-x+z的截距最大,此时z最大,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-2y+2=0}\end{array}\right.$,解得A(2,2),
此时zmax=2+2=4.
故选:D.

点评 本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知$\frac{tanα}{tanα-1}$=-1,求$\frac{1}{si{n}^{2}α+sinαcosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设实数x,y满足约束条件 $\left\{\begin{array}{l}{4x-y-10≤0}\\{x-2y+8≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的x≥0,y≥0最大值为12,则$\frac{2}{a}+\frac{3}{b}$的最小值为(  )
A.$\frac{25}{6}$B.$\frac{8}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为120°,则$\overrightarrow{{e}_{1}}$$•\overrightarrow{{e}_{2}}$=-$\frac{1}{2}$,|$\overrightarrow{{e}_{1}}$-$λ\overrightarrow{{e}_{2}}$|(λ∈R)的最小值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在下列各散点图中,两个变量具有正相关关系的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知离散型随机变量X的分布列如下:
X012
Px4x5x
由此可以得到期望E(X)=1.4,方差D(X)=0.44.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数.
(1)求z1及$\overline{z_1}$;
(2)求z2及|z1+z2|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知 $\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,则sin2α=(  )
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.$-\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC是边长为4的等边三角形,P为平面ABC内一点,则$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是(  )
A.-2B.$-\frac{3}{2}$C.-3D.-6 

查看答案和解析>>

同步练习册答案