精英家教网 > 高中数学 > 题目详情
17.已知a∈R,函数f(x)=2ln(x-2)-a(x-2)2
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个相异零点x1,x2,求证x1x2+4>2(x1+x2)+e(其中e为自然对数的底数)

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(Ⅱ)问题转化为证明证:m<-2,可化为(t2+1)lnt>t2-1,即证(t2+1)lnt-t2+1>0,构造函数g(t)=(t2+1)lnt-t2+1(t>1),根据函数的单调性证明即可.

解答 解:(Ⅰ)f(x)的定义域为(2,+∞),
$f'(x)=\frac{2}{x-2}-2a(x-2)=\frac{2}{x-2}[1-a{(x-2)^2}]$,…(1分)
①当a≤0时,f'(x)>0恒成立,f(x)在(2,+∞)上单调递增,…(2分)
②当a>0时,令$f'(x)=\frac{-2a}{x-2}({x-2+\sqrt{\frac{1}{a}}})({x-2-\sqrt{\frac{1}{a}}})=0$,解得${x_0}=2+\frac{{\sqrt{a}}}{a}$,
x∈(2,x0)时,f'(x)>0,f(x)在(2,x0)单调递增,
x∈(x0,+∞)时,f′(x)<0,f(x)在(x0,+∞)单调递减,
综上所述,当a≤0时,f(x)在(2,+∞)上单调递增,
当a>0时,f(x)在$({2,2+\frac{{\sqrt{a}}}{a}})$上单调递增,在$({2+\frac{{\sqrt{a}}}{a},+∞})$上单调递减;…(5分)
(Ⅱ)要证:x1x2+4>2(x1+x2)+e,则证(x1-2)(x2-2)>e,
即证|2x+3|+|2x-1|≤5,不妨设$x≤-\frac{3}{2}$,
∵-4x-2≤5,$-\frac{7}{4}≤x≤-\frac{3}{2}$是函数$-\frac{3}{2}<x<\frac{1}{2}$的零点,
则4≤5,$-\frac{3}{2}<x<\frac{1}{2}$,所以$x≥\frac{1}{2}$,4x+2≤5,
所以$\frac{1}{2}≤x≤\frac{3}{4}$,$\left\{{x|-\frac{7}{4}≤x≤\frac{3}{4}}\right\}$,
则$f(x)=\left\{\begin{array}{l}-4x-2,x≤-\frac{3}{2}\\ 4,-\frac{3}{2}<x<\frac{1}{2}\\ 4x+2,x≥\frac{1}{2}\end{array}\right.$,
则转化为证:y=f(x),令|m-2|>4,则m>6,
于是即证:m<-2,可化为(t2+1)lnt>t2-1,
即证(t2+1)lnt-t2+1>0,…(9分)
构造函数g(t)=(t2+1)lnt-t2+1(t>1),
$g'(t)=2tlnt+\frac{{1-{t^2}}}{t}=\frac{{2{t^2}lnt+1-{t^2}}}{t}$,
令z(t)=2t2lnt+1-t2(t>1),则z'(t)=4tlnt>0,
则z(t)在(1,+∞)单增,则z(t)>z(1)=0,
则g'(t)>0,则g(t)在(1,+∞)单增,
则g(t)>g(1)=0,即(t2+1)lnt-t2+1>0成立,
所以x1x2+4>2(x1+x2)+e成立.…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,a,b,c分别是三个内角A,B,C的对边,若2asinB=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中真命题的个数是(  )
 ①命题“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$+1>0”;
 ②若命题p,q中有一个是假命题,则¬(p∧q)是真命题;
 ③在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的必要不充分条件.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,P在△ABC的三边上,MN是△ABC外接圆的直径,若AB=2,BC=3,AC=4,则$\overrightarrow{PM}$•$\overrightarrow{PN}$的取值范围是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}是首项为a1,公差为d的等差数列.
(1)若a1=-11,d=2,bn=3an,数列{bn}的前n项积记为Bn,且Bn0=1,求n0的值;
(2)若a1d≠0,且a13+a23+…+an3=(a1+a2+…+an2恒成立,求{an}的通项公式;
(3)设n、k∈N*,n≥2,试证组合数满足kCnk=nCn-1k-1;观察C20a1-C21a2+C22a3=0,C30a1-C31a2+C32a3-C33a4=0,C40a1-C41a2+C42a3-C43a4+C44a5=0,…,请写出关于等差数列{an}的一般结论,并利用kCnk=nCn-1k-1证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若一个圆锥的侧面积展开图是面积为2π的半圆面,则该圆锥的轴截面面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.曲线C的极坐标方程为ρcosθ-ρsinθ+3=0,曲线D的参数方程为$\left\{\begin{array}{l}x=2+\sqrt{2}cosα\\ y=1+\sqrt{2}sinα\end{array}\right.$(α为参数).
(1)将曲线C的极坐标方程化为直角坐标方程,曲线D的参数方程化为普通方程;
(2)若点P为直线$\left\{\begin{array}{l}x=1+\sqrt{2}t\\ y=4+\sqrt{2}t\end{array}\right.$(t为参数)上的动点,点Q为曲线D上的动点,求P,Q两点间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆O的周长和面积同时等分成两部分的函数称为圆煌一个“太极函数”下列有关说法中:
①对圆O:x2+y2=1的所有非常数函数的太极函数中,一定不能为偶函数;
②函数f(x)=sinx+1是圆O:x2+(y-1)2=1的一个太极函数;
③存在圆O,使得f(x)=$\frac{{e}^{x}+1}{{e}^{x}-1}$是圆O的太极函数;
④直线(m+1)x-(2m+1)y-1=0所对应的函数一定是圆O:(x-2)2+(y-1)2=R2(R>0)的太极函数.
所有正确说法的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}的公比为q,前n项和为Sn,若an>0,q>1,a3+a5=20,a2•a6=20,则S5=(  )
A.30B.31C.62D.63

查看答案和解析>>

同步练习册答案