精英家教网 > 高中数学 > 题目详情
3.函数f(x)=x3-3x极大值为2.

分析 先求函数的导函数,再解不等式f′(x)>0和f′(x)<0得函数的单调区间,进而由极值的定义求得函数的极值点和极值

解答 解:∵f′(x)=3x2-3=3(x+1)(x-1),
∴函数f(x)=x3-3x在(-∞,-1)是增函数,在(-1,1)上是减函数,在(1,+∞)是增函数,
∴函数f(x)=x3-3x在x=-1时取得极大值2,
故答案为:2.

点评 利用导数工具求该函数的极值是解决该题的关键,要先确定出导函数等于零的实数x的值,再讨论出函数的单调区间,根据极值的判断方法求出该函数的极值,体现了导数的工具作用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x3+ax2+(a+6)x+1既有极大值又有极小值,则a的取值范围为(  )
A.a≤-1或a≥2B.a<-1或a>2C.a≤-3或a≥6D.a<-3或a>6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|lg|x-2||+x2-4x有四个零点,分别为x1、x2、x3、x4,则x1+x2+x3+x4的值为(  )
A.8B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=6,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是150°,计算:
(1)($\overrightarrow{a}+2\overrightarrow{b}$)•(2$\overrightarrow{a}-\overrightarrow{b}$);
(2)|4$\overrightarrow{a}-2\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,经过点(0,3)且斜率为k的直线l与圆x2+y2=4有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设A(2,0),B(0,1),若向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{AB}$共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ax3+bx+c在点x=2处取得极值c-32.
(1)求a,b的值;
(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=x3+ax2+bx+a2在x=1时有极值10,则实数a,b的值是(  )
A.$\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$B.$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$
C.$\left\{{\begin{array}{l}{a=-3}\\{b=3}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=-11}\end{array}}\right.$D.$\left\{{\begin{array}{l}{a=-3}\\{b=-11}\end{array}}\right.$或$\left\{{\begin{array}{l}{a=4}\\{b=3}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-$\frac{1}{2}{x^2}$-2x+c
(1)求函数f(x)的极值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,上下两个顶点为B1,B2,四边形F1B1F2B2的周长为8,∠F1B1F2=120°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(1,0)斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,A为椭圆的右顶点,直线AE、AF分别交直线x=3于点M、N,线段MN的中点为P,记直线PF2的斜率为k′与直线l的斜率k的乘积是否为定值?若是,求出这个定值,若不是说明理由.

查看答案和解析>>

同步练习册答案