精英家教网 > 高中数学 > 题目详情
3.设$f(x)=sin(x+\frac{π}{3});a=f(\frac{π}{12}),b=f(\frac{π}{6}),c=f(\frac{π}{3})$,则(  )
A.a>b>cB.c>a>bC.b>c>aD.b>a>c

分析 根据正弦函数的图象与性质,化简并比较大小即可.

解答 解:∵f(x)=sin(x+$\frac{π}{3}$),
a=f($\frac{π}{12}$)=sin$\frac{5π}{12}$,
b=f($\frac{π}{6}$)=sin$\frac{π}{2}$=1,
c=f($\frac{π}{3}$)=sin$\frac{2π}{3}$=sin$\frac{π}{3}$,
∴sin$\frac{π}{2}$>sin$\frac{5π}{12}$>sin$\frac{π}{3}$,
∴b>a>c.
故选:D.

点评 本题考查了正弦函数的图象与性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知曲线$\frac{y^2}{b}$-$\frac{x^2}{a}$=1(a•b≠0且a≠b)与直线x+y-2=0相交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0(O为原点),则$\frac{1}{b}$-$\frac{1}{a}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若l、m、n是互不重合的直线,α、β是不重合的平面,则下列命题中为真命题的是(  )
A.若α⊥β,l?α,n?β,则l⊥nB.若l⊥α,l∥β,则α⊥β
C.若l⊥n,m⊥n,则l∥nD.若α⊥β,l?α,则l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=blnx+x-$\frac{1}{x}$(b∈R).
(1)若曲线y=f(x)在点(1,2)处的切线与直线x-y+3=0垂直,求实数b的值;
(2)若函数f(x)在[1,+∞)上单调递增,求实数b的取值范围;
(3)已知g(x)=$\frac{1}{2}$x2+(t-1)x+$\frac{1}{x}$,t≤-$\frac{{3\sqrt{2}}}{2}$,h(x)=f(x)+g(x),当b=1时,h(x)有两个极值点x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设3f(x)-f($\frac{1}{x}$)=$\frac{1}{x}$,求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足$\left\{{\begin{array}{l}{x+3y-3≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,则z=(x-2)2+(y-3)2的取值范围是[$\frac{32}{5},13$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知下列命题:
(1)“cosx<0”是“tanx<0”的充分不必要条件;
(2)命题“存在x∈Z,4x+1是奇数”的否定是“任意x∈Z,4x+1不是奇数”;
(3)已知a,b,c∈R,若ac2>bc2,则a>b.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知变量x、y满足约束条件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$.
(1)画出可行域(过程不要求);
(2)求可行域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=(x+2)e-x-2(其中e是自然对数的底数,e=2.71828…).
(Ⅰ) 当x>0时,求f(x)的解析式;
(Ⅱ) 若x∈[0,2]时,方程f(x)=m有实数根,求实数m的取值范围.

查看答案和解析>>

同步练习册答案