精英家教网 > 高中数学 > 题目详情
13.已知曲线$\frac{y^2}{b}$-$\frac{x^2}{a}$=1(a•b≠0且a≠b)与直线x+y-2=0相交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0(O为原点),则$\frac{1}{b}$-$\frac{1}{a}$的值为$\frac{1}{2}$.

分析 先设p(x1,y1);Q(x2,y2),根据题设条件kop*koq=-1即;y1y2=-x1x2直线方程与双曲线方程联立,求得x1+x2=和x1x2的表达式,代入y1y2=-x1x2求得答案.

解答 解:设p(x1,y1),Q(x2,y2),
∵$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0,
∴kop*koq=-1即;y1y2=-x1x2
联立直线x+y-2=0和曲线$\frac{y^2}{b}$-$\frac{x^2}{a}$=1两方程可得:(a-b)x2-4ax+4a-ab=0,
x1+x2=$\frac{4a}{a-b}$,x1x2=$\frac{4a-ab}{a-b}$,
y1y2=(2-x1)(2-x2)=4-2(x1+x2)+x1x2=-x1x2
即4-2•$\frac{4a}{a-b}$+$\frac{4a-ab}{a-b}$=-$\frac{4a-ab}{a-b}$,
即ab=2a-2b,
则$\frac{1}{b}$-$\frac{1}{a}$=$\frac{a-b}{ab}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题主要考查了双曲线的应用.考查了学生综合分析问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={(x,y)|x2+y2≤4,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为(  )
A.49B.45C.69D.73

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\frac{x+1}{{x}^{2}}$,g(x)=log2x+m,若对?x1∈[1,2],?x2∈[1,4],使得f(x1)≥g(x2),则m的取值范围是(  )
A.m≤-$\frac{5}{4}$B.m≤2C.m≤$\frac{3}{4}$D.m≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,JA,JB两个开关串联再与开关JC并联,在某段时间内每个开关能够闭合的概率都是0.5,计算在这段时间内线路正常工作的概率为0.625.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列四个结论:
①已知直线l1:ax+y+1=0,l2:x+ay+a2=0,则l1∥l2的充要条件为a=±1;
②函数f(x)=$\sqrt{3}$sinωx+cosωx满足f(x+$\frac{π}{2}$)=-f(x),则函数f(x)的一个对称中心为($\frac{π}{6}$,0);
③已知平面α和两条不同的直线a,b,满足b?α,a∥b,则a∥α;
④函数f(x)=$\frac{1}{x}$+lnx的单调区间为(0,1)∪(1,+∞).
其中正确命题的个数为(  )
A.4B.3C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x2-ax+lnx,a∈R.
(1)若a=0,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[$\frac{1}{2}$,1]上是增函数,求实数a的取值范围;
(3)令g(x)=x2-f(x),x∈(0,e](e是自然对数的底数);求当实数a等于多少时,可以使函数g(x)取得最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数为f′(x),对?x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e${\;}^{\frac{x}{2}}}$的解集是(  )
A.(1,+∞)B.(0,ln4)C.(ln4,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求适合下列条件的椭圆的标准方程:
(1)焦点在x轴上,且经过点(2,0)和点(0,1);
(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设$f(x)=sin(x+\frac{π}{3});a=f(\frac{π}{12}),b=f(\frac{π}{6}),c=f(\frac{π}{3})$,则(  )
A.a>b>cB.c>a>bC.b>c>aD.b>a>c

查看答案和解析>>

同步练习册答案