精英家教网 > 高中数学 > 题目详情
2.求适合下列条件的椭圆的标准方程:
(1)焦点在x轴上,且经过点(2,0)和点(0,1);
(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.

分析 (1)由题意可知:设椭圆的标准方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),则点(2,0)为椭圆的右顶点,点(0,1)为椭圆的上顶点,a=2,b=1,即可求得椭圆的标准方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)由椭圆的焦点在y轴上,设它的标准方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0),P(0,-10)在椭圆上,即P为椭圆的下顶点,则a=10.-c-(-10)=2,故c=8,b2=a2-c2=36.即可求得椭圆方程.

解答 解:(1)由椭圆的焦点在x轴上,
∴设椭圆的标准方程:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),
∵椭圆经过点(2,0)和(0,1)
∴则点(2,0)为椭圆的右顶点,点(0,1)为椭圆的上顶点,
∴a=2,b=1,
则椭圆的标准方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)∵椭圆的焦点在y轴上,设它的标准方程为$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0),
∵P(0,-10)在椭圆上,即P为椭圆的下顶点,
∴a=10.
又∵P到它较近的一个焦点的距离等于2,
∴-c-(-10)=2,故c=8,
∴b2=a2-c2=36.
∴求椭圆的标准方程:$\frac{{y}^{2}}{100}+\frac{{x}^{2}}{36}=1$.

点评 本题考查椭圆的标准方程,考查椭圆的简单几何性质,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,在边长为2的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为0.72.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知曲线$\frac{y^2}{b}$-$\frac{x^2}{a}$=1(a•b≠0且a≠b)与直线x+y-2=0相交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0(O为原点),则$\frac{1}{b}$-$\frac{1}{a}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(2x-1),x>0}\end{array}\right.$,则f(f(1))=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,则(  )
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β+2cos2α=0D.cos2β=2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个直棱柱的对角线长是9cm和15cm,高是5cm,若它的底面是菱形,则这个直棱柱的侧面积是(  )
A.160 cm2B.320 cm2C.40$\sqrt{89}$cm2D.80$\sqrt{89}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若l、m、n是互不重合的直线,α、β是不重合的平面,则下列命题中为真命题的是(  )
A.若α⊥β,l?α,n?β,则l⊥nB.若l⊥α,l∥β,则α⊥β
C.若l⊥n,m⊥n,则l∥nD.若α⊥β,l?α,则l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=blnx+x-$\frac{1}{x}$(b∈R).
(1)若曲线y=f(x)在点(1,2)处的切线与直线x-y+3=0垂直,求实数b的值;
(2)若函数f(x)在[1,+∞)上单调递增,求实数b的取值范围;
(3)已知g(x)=$\frac{1}{2}$x2+(t-1)x+$\frac{1}{x}$,t≤-$\frac{{3\sqrt{2}}}{2}$,h(x)=f(x)+g(x),当b=1时,h(x)有两个极值点x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知变量x、y满足约束条件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$.
(1)画出可行域(过程不要求);
(2)求可行域的面积.

查看答案和解析>>

同步练习册答案