精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(2x-1),x>0}\end{array}\right.$,则f(f(1))=(  )
A.0B.1C.2D.3

分析 由已知中函数的解析式f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(2x-1),x>0}\end{array}\right.$,将x=1代入可得答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(2x-1),x>0}\end{array}\right.$,
∴f(1)=0,
∴f(f(1))=f(0)=0,
故选:A

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(3,m),且$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为3,则向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,JA,JB两个开关串联再与开关JC并联,在某段时间内每个开关能够闭合的概率都是0.5,计算在这段时间内线路正常工作的概率为0.625.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x2-ax+lnx,a∈R.
(1)若a=0,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在[$\frac{1}{2}$,1]上是增函数,求实数a的取值范围;
(3)令g(x)=x2-f(x),x∈(0,e](e是自然对数的底数);求当实数a等于多少时,可以使函数g(x)取得最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导函数为f′(x),对?x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e${\;}^{\frac{x}{2}}}$的解集是(  )
A.(1,+∞)B.(0,ln4)C.(ln4,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在锐角△ABC 中,A,B,C的对边为a,b,c,A=2B,则$\frac{a}{b}$的取值范围是($\sqrt{2}$,$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求适合下列条件的椭圆的标准方程:
(1)焦点在x轴上,且经过点(2,0)和点(0,1);
(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到它较近的一个焦点的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知f(x+1)=x2-3x+2,求f(x)的解析式.
(2)二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的内角A,B,C所对的边分别为a,b,c,且向量$\overrightarrow m$=(cos2B-1,2sinA)与向量$\overrightarrow n$=($\sqrt{2}$sinC,-1)平行.
(1)若a=$\sqrt{2}$,b=1,求c;
(2)若$\frac{c}{a}$+$\frac{a}{c}$>4sin(A+C),求cosB的取值范围.

查看答案和解析>>

同步练习册答案