| A. | (1,+∞) | B. | (0,ln4) | C. | (ln4,+∞) | D. | (0,1) |
分析 构造函数g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,利用导数可判断g(x)的单调性,再根据f(ln4)=2,求得g(ln4)=1,继而求出答案
解答 解:∵?x∈R,都有2f′(x)>f(x)成立,
∴f′(x)-$\frac{1}{2}$f(x)>0,于是有($\frac{f(x)}{{e}^{\frac{x}{2}}}$)′>0,
令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,则有g(x)在R上单调递增,
∵不等式f(x)>e${\;}^{\frac{x}{2}}}$,
∴g(x)>1,
∵f(ln4)=2,
∴g(ln4)=1,
∴x>ln4,
故选:C.
点评 本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cosβ=2cosα | B. | cos2β=2cos2α | C. | cos2β+2cos2α=0 | D. | cos2β=2cos2α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若α⊥β,l?α,n?β,则l⊥n | B. | 若l⊥α,l∥β,则α⊥β | ||
| C. | 若l⊥n,m⊥n,则l∥n | D. | 若α⊥β,l?α,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com