精英家教网 > 高中数学 > 题目详情
5.函数f(x)的导函数为f′(x),对?x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,则不等式f(x)>e${\;}^{\frac{x}{2}}}$的解集是(  )
A.(1,+∞)B.(0,ln4)C.(ln4,+∞)D.(0,1)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,利用导数可判断g(x)的单调性,再根据f(ln4)=2,求得g(ln4)=1,继而求出答案

解答 解:∵?x∈R,都有2f′(x)>f(x)成立,
∴f′(x)-$\frac{1}{2}$f(x)>0,于是有($\frac{f(x)}{{e}^{\frac{x}{2}}}$)′>0,
令g(x)=$\frac{f(x)}{{e}^{\frac{x}{2}}}$,则有g(x)在R上单调递增,
∵不等式f(x)>e${\;}^{\frac{x}{2}}}$,
∴g(x)>1,
∵f(ln4)=2,
∴g(ln4)=1,
∴x>ln4,
故选:C.

点评 本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,在侧面PBC内,有BE⊥PC于E,且BE=$\frac{{\sqrt{6}}}{3}$a.
(1)求证:PB⊥BC;
(2)试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知常数a,b∈R,且不等式x-alnx+a-b<0解集为空集,则ab的最大值为$\frac{1}{2}$e3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知曲线$\frac{y^2}{b}$-$\frac{x^2}{a}$=1(a•b≠0且a≠b)与直线x+y-2=0相交于P,Q两点,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=0(O为原点),则$\frac{1}{b}$-$\frac{1}{a}$的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在极坐标系中,已知曲线C:ρ=2cosθ,将曲线C上的点向左平移一个单位,然后纵坐标不变,横坐标伸长到原来的2倍,得到曲线C1,又已知直线l:$\left\{\begin{array}{l}x=tcos\frac{π}{3}\\ y=\sqrt{3}+tsin\frac{π}{3}\end{array}$(t是参数),且直线l与曲线C1交于A,B两点.
(1)求曲线C1的直角坐标方程,并说明它是什么曲线;
(2)设定点P(0,$\sqrt{3}$),求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≤0}\\{ln(2x-1),x>0}\end{array}\right.$,则f(f(1))=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,则(  )
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β+2cos2α=0D.cos2β=2cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若l、m、n是互不重合的直线,α、β是不重合的平面,则下列命题中为真命题的是(  )
A.若α⊥β,l?α,n?β,则l⊥nB.若l⊥α,l∥β,则α⊥β
C.若l⊥n,m⊥n,则l∥nD.若α⊥β,l?α,则l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知下列命题:
(1)“cosx<0”是“tanx<0”的充分不必要条件;
(2)命题“存在x∈Z,4x+1是奇数”的否定是“任意x∈Z,4x+1不是奇数”;
(3)已知a,b,c∈R,若ac2>bc2,则a>b.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案