| A. | 4 | B. | 3 | C. | 2 | D. | 0 |
分析 根据直线平行判断①,根据三角函数的性质判断②,根据线面平行判断③,根据导数的应用判断④.
解答 解:对于①,由l1∥l2,得$\left\{\begin{array}{l}{{a}^{2}-1=0}\\{{a}^{2}-a≠0}\end{array}\right.$,
解得:a=-1,①错;
对于②,由f(x+$\frac{π}{2}$)=-f(x),得:f(x+π)=f(x),
∴f(x)的周期是π,ω=2,
∴f(x)=$\sqrt{3}$sin2x+cos2x=2sin(2x+$\frac{π}{6}$),
故x=$\frac{π}{6}$时,f(x)=2,②错;
对于③,a?α时,结论不成立,③错;
对于④,f(x)=$\frac{1}{x}$+lnx,f(x)的定义域是(0,+∞),
f′(x)=$\frac{x-1}{{x}^{2}}$,由f′(x)>0,得:x>1,
由f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增,④错;
故选:D.
点评 本题考查了充分必要条件,考查三角函数,直线的平行的关系以及导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cosβ=2cosα | B. | cos2β=2cos2α | C. | cos2β+2cos2α=0 | D. | cos2β=2cos2α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com