精英家教网 > 高中数学 > 题目详情

【题目】202011日《天津日报》发表文章总结天津海河英才计划成果厚植热土 让天下才天津用”——我市精细服务海河英才优化引才结构.“海河英才行动计划,紧紧围绕一基地三区定位,聚焦战略性新兴产业人才需求,大力、大胆集聚人才.政策实施1年半以来,截至20191130日,累计引进各类人才落户23.5万人.具体比例如图所示,新引进两院院士,长江学者,杰出青年科学基金获得者等顶尖领军人才112.记者李军计划从人才库中随机选取一部分英才进行跟踪调查采访.

1)李军抽取了8人其中学历型人才4人,技能型人才3人,资格型人才1人,周二和周五随机进行采访,每天4人(4人顺序任意),周五采访学历型人才人数不超过2人的概率;

2)李军抽取不同类型的人才有不同的采访补贴,学历型人才500/人,技能型人才400/人,资格型人才600/人,则创业型急需型人才最少补贴多少元/人使每名人才平均采访补贴费用大于等于500/人?

【答案】1;(2/

【解析】

1)利用组合数以及古典概型的概率计算公式即可求解.

2)设创业型急需型人才最少补贴/人,列出分布列,求出数学期望,使解不等式即可求解.

1)事件周五采访学历型人才人数不超过2的概率

2)各类人才的补贴数额为随机变量

取值分别为400500600分布列为:

400

500

600

25.5%

53.6%

19.1%

1.8%

,解为,

所以创业型急需型人才最少补贴/人,

才能使每名人才平均采访补贴费用大于等于500/

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】长方、堑堵、阳马、鱉臑这些名词出自中国古代数学名著《九章算术商功》.其中阳马和鱉臑是我国古代对一些特殊锥体的称呼.取一长方,如图长方体ABCDA1B1C1D1,按平面ABC1D1斜切一分为二,得到两个一模一样的三棱柱.称该三梭柱为堑堵,再沿堑堵的一顶点与相对的棱剖开,得四棱锥和三棱锥各一个,其中以矩形为底另有一棱与底面垂直的四梭锥D1ABCD称为阳马,余下的三棱锥D1BCC1是由四个直角三角形组成的四面体称为鱉臑.已知长方体ABCDA1B1C1D1中,AB5BC4AA13,按以上操作得到阳马.则该阳马的最长棱长为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,GH是东西方向的公路北侧的边缘线,某公司准备在GH上的一点B的正北方向的A处建设一仓库,设,并在公路北侧建造边长为的正方形无顶中转站CDEF(其中EF在GH上),现从仓库A向GH和中转站分别修两条道路AB,AC,已知AB=AC+1,且.

(1)求关于的函数解析式,并求出定义域;

(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:取何值时,该公司建设中转站围墙和两条道路总造价M最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域内有两个不同的极值点.

1)求的取值范围;

2)设两个极值点分别为:,证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点为正常数),轴负半轴上的一个动点,动点满足,且线段的中点在轴上.

1)求动点的轨迹的方程;

2)设为曲线的一条动弦(不垂直于轴).其垂直平分线与轴交于点.时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,

1)求证:B1CAB

2)若∠CBB160°,ACBC,且点A在侧面BB1C1C上的投影为点O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,PQMNHR是各条棱的中点.

①直线平面;②;③PQHR四点共面;④平面.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数都是定义在上的单调减函数,且,若对于任意,存在,使得成立,则称上的被追逐函数,若,下述四个结论中正确的是(

上的被追逐函数

②若和函数关于轴对称,则上的被追逐函数

③若上的被追逐函数,则

④存在,使得上的被追逐函数”.

A.①③④B.①②④C.②③D.①③

查看答案和解析>>

同步练习册答案