分析 (1)由角的范围及同角三角函数基本关系式的应用可求cosα的值,进而利用同角三角函数基本关系式可求tanα的值.
(2)利用诱导公式,同角三角函数基本关系式化简所求,利用(1)的结论即可计算求值.
解答 (本题满分为12分)
解:(1)∵$0<α<\frac{π}{2},sinα=\frac{{2\sqrt{5}}}{5}$,
∴$cosα=\frac{{\sqrt{5}}}{5}$,…(3分)
∴$tanα=\frac{sinα}{cosα}=2$;…(6分)
(2)原式=$\frac{4sinα+2cosα}{cosα-sinα}$=$\frac{4tanα+2}{1-tanα}$,…(9分)
=$\frac{10}{-1}=-10$…(12分)
点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α内的所有直线都与a异面 | B. | α内的直线都与a相交 | ||
| C. | α内不存在与a平行的直线 | D. | 直线a与平面α有公共点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com