分析 由已知及正弦定理可得sinB=$\frac{ACsinA}{BC}$=$\frac{1}{2}$,由大边对大角可得0<B<$\frac{π}{3}$,即可解得B的值,利用三角形内角和定理即可求C的值.
解答 解:∵BC=3,∠A=$\frac{π}{3}$,AC=$\sqrt{3}$,
∴由正弦定理可得:sinB=$\frac{ACsinA}{BC}$=$\frac{\sqrt{3}×\frac{\sqrt{3}}{2}}{3}$=$\frac{1}{2}$,
∵AC<BC,由大边对大角可得:0<B<$\frac{π}{3}$,
∴B=$\frac{π}{6}$,
∴C=π-A-B=$\frac{π}{2}$.
故答案为:$\frac{π}{2}$.
点评 本题主要考查了正弦定理,三角形内角和定理,大边对大角,正弦函数的图象和性质在解三角形中的应用,求B的值是解题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | sinα<tanα<cosα | B. | tanα<sinα<cosα | C. | cosα<sinα<tanα | D. | sinα<cosα<tanα |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份x年 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 平均成绩y分 | 97 | 98 | 103 | 108 | 109 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有最大值为$\frac{14}{5}$ | B. | 有最小值为$\frac{14}{5}$ | C. | 没有最小值 | D. | 有最大值为3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com