精英家教网 > 高中数学 > 题目详情
9.如图是一个几何体的三视图,根据图中数据,该几何体的体积是(  )
A.27B.C.$\frac{27}{4}$πD.33

分析 由已知中三视图,我们可以分析出该几何体是一个组合体,由一个棱长为3的正方体和一个底面棱长为3,高为2的正四棱锥组成,分别代入正方体体积公式及棱锥体积公式,即可求出答案.

解答 解:根据已知中的三视图可知
该几何体由一个正方体和一个正四棱锥组成
其中正方体的棱长为3,故V正方体=3×3×3=27,
正四棱锥的底面棱长为3,高为2,故V正四棱锥=$\frac{1}{3}$×3×3×2=6
故这个几何体的体积V=27+6=33
故选:D.

点评 本题考查的知识点是由三视图求体积,其中分析已知中的三视图,进而判断出几何体的形状及几何特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x-1|+|x-a|.
(1)当a=1时,解不等式f(x)≥2;
(2)若f(x)=|x-1+a|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\frac{1}{(2x+1)(x-a)}$为偶函数,则a=(  )
A.1B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,则f[$\frac{1}{f(2)}$]=$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解关于x的不等式4≤x2-3x-6≤2x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=(m2-m-1)xm是幂函数,且对区间(0,+∞)上任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则实数m的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=m(m≠0)$的渐近线斜率为±2,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$D.$\sqrt{3}$或$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-t)|x|(t∈R).
(1)讨论y=f(x)的奇偶性;
(2)当t>0时,求f(x)在区间[-1,2]的最小值h(t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将函数f(x)=cosωx(ω>0)的图象向右平移$\frac{π}{3}$个单位长度后,所得到的图象与原图象关于y轴对称,则ω的最小值为(  )
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

同步练习册答案