分析 由圆的性质可以类比得到椭圆的类似性质.
解答 解:由圆的性质可以类比得到椭圆的类似性质,即kAC•kBC=-$\frac{{b}^{2}}{{a}^{2}}$,
证明如下:设点A的坐标为(m,n),则点B的坐标为(-m,-n),进而可知$\frac{{m}^{2}}{{a}^{2}}+\frac{{n}^{2}}{{b}^{2}}=1$,
又设点C的坐标为(x,y),
则kAC=$\frac{y-n}{x-m}$,kBC=$\frac{y+n}{x+m}$
∴kAC•kBC=$\frac{{y}^{2}-{n}^{2}}{{x}^{2}-{m}^{2}}$,
将y2=b2(1-$\frac{{x}^{2}}{{a}^{2}}$),n2=b2(1-$\frac{{m}^{2}}{{a}^{2}}$)代入得kAC•kBC=-$\frac{{b}^{2}}{{a}^{2}}$.
故答案为:-$\frac{{b}^{2}}{{a}^{2}}$.
点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 7 | D. | $-\frac{5}{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{3}{2}i$ | D. | $-\frac{1}{2}i$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com