精英家教网 > 高中数学 > 题目详情
17.已知等差数列{an}的公差不为零,且满足a1=6,a2,a6,a14成等比数列.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{2}{{(n+1){a_n}}}$,求数列{bn}的前n项和Sn

分析 (1)设等差数列{an}的公差为d≠0,由a2,a6,a14成等比数列.可得${a}_{6}^{2}$=a2•a14,即(6+5d)2=(6+d)(6+13d),化简即可得出.
(2)bn=$\frac{2}{{(n+1){a_n}}}$=$\frac{2}{(n+1)(2n+4)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”方法即可得出.

解答 解:(1)设等差数列{an}的公差为d≠0,∵a2,a6,a14成等比数列.∴${a}_{6}^{2}$=a2•a14
∴(6+5d)2=(6+d)(6+13d),化为d2-2d=0,d≠0,解得d=2.
所以an=6+2(n-1)=2n+4.
(2)bn=$\frac{2}{{(n+1){a_n}}}$=$\frac{2}{(n+1)(2n+4)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{bn}的前n项和Sn═+$(\frac{1}{3}-\frac{1}{4})$+…+$(\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.

点评 本题考查了“裂项求和”方法、等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知A(2,5,-6),点P在y轴上,|PA|=7,则点P的坐标是(  )
A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,-8,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利民奶牛场在2016年年初开始改进奶牛饲养方法,同时每月增加一定数目的产奶奶牛,2016年2到5月该奶牛场的产奶量如表所示:
月份2345
产奶量y(吨)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测该奶牛场6月份的产奶量?
(注:回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{x})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点F1,F2分别是双曲线 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是(1,1+$\sqrt{2}$);若△ABF2是直角三角形,则该双曲线的渐近线的斜率为$\sqrt{2+2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.
④甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;
其中根据茎叶图能得到的统计结论的标号为(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-4),若$\overrightarrow{a}∥\overrightarrow{b}$则x=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面AA1C1C所成的角的正弦值为$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线x-$\sqrt{3}$y=3的倾斜角的大小为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{m}-{y^2}=1$的虚轴长是实轴长的2倍,则m=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{1}{4}$

查看答案和解析>>

同步练习册答案