分析 由等比数列的求和公式和分类讨论可得结论.
解答 解:当公比q=1时,显然可得Sn,S2n-Sn,S3n-S2n,…构成等比数列;
当q≠1时,Sn=$\frac{{a}_{1}}{1-q}$(1-qn)
S2n-Sn=$\frac{{a}_{1}}{1-q}$(1-q2n-1+qn)=$\frac{{a}_{1}}{1-q}$(1-qn)qn,
同理可得S3n-S2n=$\frac{{a}_{1}}{1-q}$(1-q3n-1+q2n)=$\frac{{a}_{1}}{1-q}$(1-qn)q2n,
∴Sn,S2n-Sn,S3n-S2n,…,构成公比为qn的等比数列
综上可得Sn,S2n-Sn,S3n-S2n,…,构成等比数列
故答案为:等比
点评 本题考查等比数列的性质,涉及等比数列的求和公式,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 围棋社 | 舞蹈社 | 相声社 | |
| 男生 | 5 | 10 | 28 |
| 女生 | 15 | 30 | m |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com