精英家教网 > 高中数学 > 题目详情
2.已知函数f(x),g(x)分别由如表给出
x123
f(x)131
x123
g(x)321
满足不等式f[g(x)]>g[f(x)]解集是{2}.

分析 根据表格分别求出对应的函数值即可得到结论.

解答 解:若x=1,则g(1)=3,f[g(x)]=f(3)=1,
g[f(1)]=g(1)=3,此时f[g(x)]>g[f(x)]不成立,
若x=2,f[g(2)]=f(2)=3,
g[f(2)]=g(3)=1,此时f[g(x)]>g[f(x)]成立,
若x=3,则f[g(3)]=f(1)=1,
g[f(3)]=g(1)=3,此时f[g(x)]>g[f(x)]不成立,
故不等式的解集为{2},
故答案为:{2}

点评 本题主要考查不等式的求解,根据函数的性质分别进行讨论是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数g(x)=$\frac{p+x}{x-2}$,且函数f(x)=logag(x)(a>0,a≠1)奇函数而非偶函数.
(1)写出f(x)在(a,+∞)上的单调性(不必证明);
(2)当x∈(r,a-3)时,f(x)的取值范围恰为(1,+∞),求a与r的值;
(3)设h(x)=$\sqrt{(x-2)g(x)}$-m(x+2)-2是否得在实数m使得函数y=h(x)有零点?若存在,求出实数m的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知定点A(-5,0),B(5,4),点P为双曲线$C:\frac{x^2}{16}-\frac{y^2}{9}=1$右支上任意一点,则|PB|-|PA|的最大值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log3(x+a)的图象上.则实数a=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=\sqrt{2sin(π-2x)-1}$的定义域为(  )
A.$\{x|2kπ+\frac{π}{6}≤x≤2kπ+\frac{5π}{6},k∈Z\}$B.$\{x|kπ+\frac{π}{6}≤x≤kπ+\frac{5π}{6},k∈Z\}$
C.$\{x|2kπ+\frac{π}{3}≤x≤2kπ+\frac{2π}{3},k∈Z\}$D.$\{x|kπ+\frac{π}{12}≤x≤kπ+\frac{5π}{12},k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\root{3}{{{{(-4)}^3}}}+{(-\frac{1}{8})^{-\frac{4}{3}}}+{(lg2)^2}+lg5•lg20$=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义在区间(-1,1)上的增函数f(x)=$\frac{ax+b}{{x}^{2}+1}$为奇函数,且f($\frac{1}{2}$)=$\frac{2}{5}$
(1)求函数f(x)的解析式;
(2)解关于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若集合A={x|x2-2x<0,x∈R},集合B={x||x|>1,x∈R},则A∩B=(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对a、b∈R,记$max\left\{{a\;,\;\;b}\right\}=\left\{\begin{array}{l}a\;,\;\;a≥b\\ b\;,\;\;a<b\end{array}\right.$,函数f(x)=max{|x|,-x2-2x+2},x∈(-4,3)
(1)求f(0),f(-3);
(2)写出解析式,并作出f(x)的图象;
(3)就k的值讨论关于x的议程f(x)=k解的个数情况.

查看答案和解析>>

同步练习册答案