在平面直角坐标系xOy中,设点F(
,0),直线l:x=-
,点P在直线l上移动,R是线段PF与y轴的交点,RQ⊥FP,PQ⊥l.
(1)求动点Q的轨迹C的方程;
(2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由.
科目:高中数学 来源: 题型:
圆心在抛物线y2=2x(y>0)上,并且与抛物线的准线及x轴都相切的圆的方程是( )
A.x2+y2-x-2y-
=0
B.x2+y2+x-2y+1=0
C.x2+y2-x-2y+1=0
D.x2+y2-x-2y+
=0
查看答案和解析>>
科目:高中数学 来源: 题型:
已知双曲线
-
=1(a,b>0)的右焦点F,若过F且倾斜角为60°的直线l与双曲线的右支有且只有1个交点,则此双曲线的离心率e的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
点A、B分别为椭圆
+
=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求点P的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知中心在原点,焦点在x轴上的双曲线的一条渐近线为mx-y=0,若m为集合{1,2,3,4,5,6,7,8,9}中任意一个值,则使得双曲线的离心率大于3的概率是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
存在两条直线x=±m与双曲线
-
=1(a>0,b>0)相交于A、B、C、D四点,若四边形ABCD为正方形,则双曲线的离心率的取值范围为( )
A.(1,
) B.(1,
)
C.(
,+∞) D.(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
已知平面上一定点C(-1,0)和一定直线l:x=-4,P为该平面上一动点,作PQ⊥l,垂足为Q,
=0.
(1)问点P在什么曲线上?并求出该曲线方程;
(2)点O是坐标原点,A、B两点在点P的轨迹上,若
,求λ的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com