分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.
解答 解:作出不等式组对应的平面区域如图:![]()
z=$\frac{y-2}{x+2}$的几何意义为平面区域内的点到定点D(-2,2)的斜率,
由图象知CD的斜率最小,AD的斜率最大,
其中C(0,2),
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,即A(3,5),
则CD的斜率z=0,AD的斜率z=$\frac{5-2}{3+2}$=$\frac{3}{5}$,
即0≤z≤$\frac{3}{5}$,
故答案为:0≤z≤$\frac{3}{5}$
点评 本题主要考查线性规划以及斜率的应用,利用z的几何意义,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | -$\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线与圆相切 | B. | 直线与圆相交但不过圆心 | ||
| C. | 直线与圆相离 | D. | 直线过圆心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com