精英家教网 > 高中数学 > 题目详情
19.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x-5y+10≤0}\\{x+y-8≤0}\end{array}\right.$,则目标函数z=$\frac{y-2}{x+2}$的取值范围是0≤z≤$\frac{3}{5}$.

分析 作出不等式组对应的平面区域,利用z的几何意义,结合数形结合即可得到结论.

解答 解:作出不等式组对应的平面区域如图:
z=$\frac{y-2}{x+2}$的几何意义为平面区域内的点到定点D(-2,2)的斜率,
由图象知CD的斜率最小,AD的斜率最大,
其中C(0,2),
由$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-8=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,即A(3,5),
则CD的斜率z=0,AD的斜率z=$\frac{5-2}{3+2}$=$\frac{3}{5}$,
即0≤z≤$\frac{3}{5}$,
故答案为:0≤z≤$\frac{3}{5}$

点评 本题主要考查线性规划以及斜率的应用,利用z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,那么cos(2α+$\frac{3}{2}π}$)的值等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若复数z=(cosθ-$\frac{3}{5}$)+(sinθ-$\frac{4}{5}$)i为纯虚数,则tanθ=(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{1}{2}$x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(1)求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知实数x,y,a满足x+y=a.
(1)若$\frac{x}{{3}^{3}-{5}^{3}}$+$\frac{y}{{3}^{3}-{6}^{3}}$=1,$\frac{x}{{4}^{3}-{5}^{3}}$+$\frac{y}{{4}^{3}-{6}^{3}}$=1,求a的值;
(2)若x3+y3=x5+y5=a,求a的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知定义在R上的函数f(x),g(x)满足$\frac{f(x)}{g(x)}={b^x}$,且f′(x)g(x)<f(x)g′(x),$\frac{f(1)}{g(1)}+\frac{{f({-1})}}{{g({-1})}}=\frac{5}{2}$,若{an}是正项等比数列,且a5a7+2a6a8+a4a12=$\frac{f(4)}{g(4)}$,则a6+a8等于(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把直线l:x+$\sqrt{3}$y=0绕原点按顺时针方向旋转30°,得到直线m,则直线m与圆x2+y2-4x+1=0的位置关系是(  )
A.直线与圆相切B.直线与圆相交但不过圆心
C.直线与圆相离D.直线过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知A={1,2},B={2,3},C={1,3},则(A∩B)∪C=(  )
A.{1,2}B.{1,3}C.{1,2,3}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\frac{π}{4}<α<\frac{3π}{4}$,0<β<$\frac{π}{4}$,且cos($\frac{π}{4}-α$)=$\frac{3}{5}$,sin($\frac{π}{4}+β$)=$\frac{5}{13}$,求cos2(α+β)

查看答案和解析>>

同步练习册答案