精英家教网 > 高中数学 > 题目详情
17.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2|x|+\frac{1}{2},x≤0}\\{|lgx|-1,x>0}\end{array}\right.$的零点个数为(  )
A.1个B.2个C.3个D.4个

分析 方程|lgx|=1,(x>0)有两个根10、$\frac{1}{10}$;方程x2-2|x|+$\frac{1}{2}$=0 (x<0)可得x=$\frac{-2±\sqrt{2}}{2}$<0.

解答 解:方程|lgx|=1,(x>0)有两个根10、$\frac{1}{10}$;
方程x2-2|x|+$\frac{1}{2}$=0 (x<0)⇒x2+2x+$\frac{1}{2}$=0 (x<0)⇒x=$\frac{-2±\sqrt{2}}{2}$<0,故有4个根,
所以函数有4个零点,
故选:D.

点评 本题考查了函数零点的本质含义及求零点的最基本的方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.(1)${(2\frac{1}{4})^{\frac{1}{2}}}-{(-0.96)^0}-{(3\frac{3}{8})^{-\frac{2}{3}}}+{(\frac{3}{2})^{-2}}+{[{(-\root{3}{2})^{-4}}]^{-\frac{3}{4}}}$
(2)已知14a=6,14b=7,用a,b表示log4256.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB与△PAD都是等边三角形,平面ABCD⊥平面PBD.
(I)证明:CD⊥平面PBD;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上一点P到点(5,0)的距离为15,则点P到点(-5,0)的距离为23或7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设A,B是两个集合,则“A∪B=A”是“A?B”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知向量$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小;
(Ⅱ)若$a=\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若$f(a)≥f(\frac{1}{3})$,则a的取值范围是(  )
A.$a≥\frac{1}{3}$B.$a≤-\frac{1}{3}$C.$-\frac{1}{3}≤a≤\frac{1}{3}$D.$a≥\frac{1}{3}$或$a≤-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$.以原点为圆心,椭圆的短轴长为直径的圆与直线x-y+$\sqrt{2}$=0相切.
(1)求椭圆C的方程;
(2)如图,若斜率为k(k≠0)的直线l与x轴、椭圆C顺次相交于A,M,N(A点在椭圆右顶点的右侧),且∠NF2F1=∠MF2A.求证直线l恒过定点,并求出斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设y=f(x)有反函数y=f-1(x),又y=f(x+2)与y=f-1(x-1)互为反函数,则f-1(2004)-f-1(1)的值为(  )
A.4006B.4008C.2003D.2004

查看答案和解析>>

同步练习册答案