精英家教网 > 高中数学 > 题目详情
12.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.

分析 (Ⅰ)证明:AD⊥平面ABFE,即可证明平面PAD⊥平面ABFE;
(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法建立方程关系即可求正四棱锥P-ABCD的高.

解答 (Ⅰ)证明:直三棱柱ADE-BCF中,AB⊥平面ADE,
所以:AB⊥AD,又AD⊥AF,
所以:AD⊥平面ABFE,AD?平面PAD,
所以:平面PAD⊥平面ABFE….(6分)
(Ⅱ)∵AD⊥平面ABFE,∴建立以A为坐标原点,AB,AE,AD分别为x,y,z轴的空间直角坐标系如图:
设正四棱锥P-ABCD的高为h,AE=AD=2,
则A(0,0,0),F(2,2,0),C(2,0,2),
$\overrightarrow{AE}$=(2,2,0),$\overrightarrow{AC}$=(2,0,2),$\overrightarrow{AP}$=(1,-h,1),
$\overrightarrow{n}$=(x,y,z)是平面AFC的法向量,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AF}=2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2x+2z=0}\end{array}\right.$,
令x=1,则y=z=-1,即$\overrightarrow{n}$=(1,-1,-1),
设$\overrightarrow{m}$=(x,y,z)是平面ACP的法向量,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AF}=2x+2y=0}\\{\overrightarrow{m}•\overrightarrow{AP}=x-hy+z=0}\end{array}\right.$,令x=1,则y=-1,z=-1-h,即$\overrightarrow{m}$=(1,-1,-1-h),
∵二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.
∴cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1+1+1+h}{\sqrt{3}•\sqrt{2+(h+1)^{2}}}$=$\frac{{2\sqrt{2}}}{3}$.
得h=1或h=-$\frac{3}{5}$(舍)
则正四棱锥P-ABCD的高h=1.

点评 本题主要考查空间面面垂直的判断以及空间二面角的求解,建立空间坐标系,求出平面的法向量,利用向量法是解决二面角常用的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin2(x+φ),则(  )
A.当φ=-$\frac{π}{4}$时,f(x)为奇函数B.当φ=0时,f(x)为偶函数
C.当φ=$\frac{π}{2}$时,f(x)为奇函数D.当φ=π时,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为R的奇函数f(x)的导函数f′(x),当x≠0时,f′(x)-$\frac{f(x)}{x}>0$,若a=$\frac{f(cos3)}{cos3}$,b=-$\frac{f(-2016)}{2016}$,c=(log3e)f(ln3),则下列关于a、b、c的大小关系正确的是(  )
A.b>c>aB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知偶函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x<0时有2f(x)+xf′(x)>x2,C,则不等式(x+2014)2f(x+2014)-4f(-2)<0的解集为(  )
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}x-b$有整数零点x0,则x0=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是梯形,AD∥BC,∠BAD=90°,四边形CC1D1D为矩形,已知AB⊥BC1,AD=4,AB=2,BC=1.
(1)求证:BC1∥平面ADD1
(2)若DD1=2,求平面AC1D1与平面ADD1所成的锐二面角的余弦值;
(3)设P为线段C1D上的一个动点(端点除外),判断直线BC1与直线CP能否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题p:?a∈(0,1)∪(1,+∞),函数f(x)=loga(x-1)的图象过点(2,0),命题q:?x∈N,x3<x2.则(  )
A.p假q假B.p真q假C.p假q真D.p真q真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{m}{x+1}$+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y-2=0
(1)判断函数f(x)的单调性;
(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[$\frac{1}{2}$,2],f(x)≥t3-t2-2at+2与f(x)≤t3-t2-2at+2中恰有一个恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.每逢节假日,在微信好友群发红包逐渐成为一种时尚.某女士每月发红包的个数y(个)与月收入x(千元)具有线性相关关系,用最小二乘法建立回归方程为$\hat y$=8.9x+0.3,则下列说法不正确的是(  )
A.y与x具有正线性相关关系
B.回归直线必过点($\overline{x}$,$\overline{y}$)
C.该女士月收入增加1000元,则其发红包的数量约增加9个
D.该女士月收入为3000元,则可断定其发红包的数量为27个

查看答案和解析>>

同步练习册答案