精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\frac{m}{x+1}$+nlnx(m,n为常数)的图象在x=1处的切线方程为x+y-2=0
(1)判断函数f(x)的单调性;
(2)已知p∈(0,1),且f(p)=2,若对任意x∈(p,1),任意t∈[$\frac{1}{2}$,2],f(x)≥t3-t2-2at+2与f(x)≤t3-t2-2at+2中恰有一个恒成立,求实数a的取值范围.

分析 (1)利用导数的意义求得m,进而求出单调区间;
(2)f(x)在[p,1]上的最小值为f(1)=1,最小值f(p)=2,只需2a≥t2-t+$\frac{1}{t}$对t∈[$\frac{1}{2}$,2]恒成立或2a≤t2-t对t∈[$\frac{1}{2}$,2]恒成立,利用导数求出函数的单调性,列出不等式,即可求得结论;

解答 解:(1)由f(x)=$\frac{m}{x+1}$+nlnx(m,n为常数)的定义域为(0,+∞),
∴f′(x)=-$\frac{m}{{(x+1)}^{2}}$+$\frac{n}{x}$,
∴f′(1)=-$\frac{m}{4}$+n=-1,
把x=1代入x+y-2=0得y=1,∴f(1)=$\frac{m}{2}$=1,
∴m=2,n=-$\frac{1}{2}$,
∴f(x)=$\frac{2}{x+2}$-$\frac{1}{2}$lnx,f′(x)=-$\frac{2}{{(x+1)}^{2}}$-$\frac{1}{2x}$,
∵x>0,∴f′(x)<0,
∴f(x)的单调递减区间为(0,+∞),没有递增区间.
(2)由(1)可得,f(x)在[p,1]上单调递减,
∴f(x)在[p,1]上的最小值是f(1)=1,最大值是f(p)=2,
∴只需t3-t2-2at+2≤1或≥2,
即2a≥t2-t+$\frac{1}{t}$对t∈[$\frac{1}{2}$,2]恒成立或2a≤t2-t对t∈[$\frac{1}{2}$,2]恒成立,
令g(t)=t2-t+$\frac{1}{t}$,则g′(t)=$\frac{(t-1)({2t}^{2}+t+1)}{{t}^{2}}$,
令g′(t)=0,解得:t=1,而2t2+t+1>0恒成立,
∴$\frac{1}{2}$≤t<1时,g′(t)<0,g(t)递减,1<t≤2时,g′(t)>0,g(t)递增,
∴g(t)的最大值是max{g($\frac{1}{2}$),g(2)},
而g($\frac{1}{2}$)=$\frac{7}{4}$<g(2)=$\frac{5}{2}$,
∴g(t)在[$\frac{1}{2}$,2]的最大值是g(2)=$\frac{5}{2}$,
又t2-t∈[-$\frac{1}{4}$,2],
∴2a≥$\frac{5}{2}$或2a≤-$\frac{1}{4}$,解得:a≥$\frac{5}{4}$或a≤-$\frac{1}{8}$,
故a的范围是(-∞,-$\frac{1}{8}$]∪[$\frac{5}{4}$,+∞).

点评 本题主要考查利用导数研究函数的单调性、最值等知识,考查学生对恒成立问题的等价转化思想,考查学生的运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.用反证法证明命题“设a,b,c∈N*,若ab能被c整除,且c为质数,则a与b至少有一个能被c整除”时,反设正确的是(  )
A.a,b中至多有一个能被c整除B.a,b中至多有一个不能被c整除
C.a,b中至少有一个不能被c整除D.a,b都不能被c整除

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(1)证明:平面PAD⊥平面ABFE;
(2)求正四棱锥P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是一个空间几何体的三视图,则该几何体为六棱台.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个几何体的正视图和俯视图都是边长为6cm的正方形,侧视图是等腰直角三角形(如图所示),这个几何体的体积是(  )
A.216cm3B.54cm3C.36cm3D.108cm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知方程$\widehat{y}$=0.85x-82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,$\widehat{y}$的单位是kg,那么针对某个体(160,53)的残差是-0.29.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为(  )
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.电影《功夫熊猫3》预计在2016年1月29日上映,某地电影院为了了解当地影迷对票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如表:
 x(单位:元) 30 40 50 60
 y(单位:万人) 4.5 4 3 2.5
(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;
(2)请根据如表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}\overrightarrow{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{-2}}$,$\overrightarrow{a}$=$\overrightarrow{y}$-$\widehat{b}$$\overrightarrow{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点P是曲线ρ=2(0≤θ≤π)上的动点,A(2,0),AP的中点为Q.
(1)求点Q的轨迹C的直角坐标方程;
(2)若C上点 M处的切线斜率的取值范围是[-$\sqrt{3}$,-$\frac{{\sqrt{3}}}{3}}$],求点 M横坐标的取值范围.

查看答案和解析>>

同步练习册答案