精英家教网 > 高中数学 > 题目详情

【题目】如图,一幅壁画的最高点处离地面米,最低点处离地面.正对壁画的是一条坡度为的甬道(坡度指斜坡与水平面所成角的正切值),若从离斜坡地面米的处观赏它.

1)若对墙的投影(即过的垂线垂足为投影)恰在线段(包括端点)上,求点离墙的水平距离的范围;

2)在(1)的条件下,当点离墙的水平距离为多少时,视角)最大?

【答案】1)点离墙的水平距离的范围为:;(2)当点离墙的水平距离为1m时,视角)最大.

【解析】

1)如图所示:设,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;

2)利用两角和的正切公式、结合正切的定义,求出的表达式,利用换元法、基本不等式进行求解即可.

1)如图所示:设,显然有,因此有

,由,可得:,化简得:,因为,所以,即点离墙的水平距离的范围为:

2

,

因为,所以有,代入上式化简得:

因为,所以有(当且仅当时取等号,即时,取等号),因此有,因此当点离墙的水平距离为1m时,视角)最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】港珠澳大桥是中国境内一座连接中国香港、广东珠海和中国澳门的桥隧工程,因其超大的建筑规模、空前的施工难度以及顶尖的建造技术闻名世界,为内地前往香港的游客提供了便捷的交通途径,某旅行社分年龄统计了大桥落地以后,由香港大桥实现内地前往香港的老中青旅客的比例分别为,现使用分层抽样的方法从这些旅客中随机抽取名,若青年旅客抽到60人,则(

A.老年旅客抽到150B.中年旅客抽到20

C.D.被抽到的老年旅客以及中年旅客人数之和超过200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191017日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )

A.18B.20C.22D.24

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,侧面底面是边长为2的正三角形底面是菱形,点的中点

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,交于点.

(Ⅰ)在线段上找一点,使得平面,并证明你的结论;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(1)若,求曲线的直角坐标方程以及直线的极坐标方程;

(2)设点,曲线与直线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋子中有红、黄、蓝、绿四个小球,有放回地从中任取一个小球,将“三次抽取后,红色小球,黄色小球都取到”记为事件M,用随机模拟的方法估计事件M发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表红、黄、蓝、绿四个小球,以每三个随机数为一组,表示取小球三次的结果,经随机模拟产生了以下18组随机数:

110

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件M发生的概率为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案