精英家教网 > 高中数学 > 题目详情
x>0,求y=4+2x+
3
x
的最小值,并求x的值.
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式的性质即可得出.
解答: 解:∵x>0,
∴y=4+2x+
3
x
≥4+2
2x•
3
x
=4+2
6

当且仅当x=
6
2
时取等号.
∴y=4+2x+
3
x
的最小值为4+2
6
,此时x=
6
2
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A={y|y=ex,x∈R},B={x∈Z|log6(x+3)<1},则A∩B=(  )
A、{x|0<x<3}
B、{1,2}
C、{-2,-1,0,1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)满足f(2x)=x2-2ax+a2-1,且f(x)在[2a-1,2 a2-2a+2]上的值域为[-1,0],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的面积为
3
2
,且b=2,c=
3
,则角A等于(  )
A、30°
B、60°
C、30°或60°
D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,c=4,a=2,C=45°,则sinA等于(  )
A、
1
2
B、
2
2
C、
2
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
x在(-∞,+∞)内是减函数.
 
.(判断对错)

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<a<b<1,则下列不等式成立的是(  )
A、a3>b3
B、
1
a
1
b
C、a2>b2
D、0<b-a<1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log
1
2
(x-x2)的单调递增区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c,且a=1,b=2,cosC=
1
4

(1)求c和sinB的值;
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案